ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Archives of microbiology 151 (1989), S. 459-465 
    ISSN: 1432-072X
    Keywords: Methanogenesis from acetate ; Methanopterin ; Methanofuran ; Coenzyme F420 ; Coenzyme M ; 7-Mercaptoheptanoylthreonine phosphate (=component B) ; Methanosarcina barkeri
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Cell extracts (100,000×g) of acetate grown Methanosarcina barkeri (strain MS) catalyzed CH4 and CO2 formation from acetyl-CoA with specific activities of 50 nmol·min-1·mg protein-1. CH4 formation was found to be dependent on tetrahydromethanopterin (H4MPT) (apparent K M=4 μM), coenzyme M (H-S-CoM), and 7-mercaptoheptanoylthreonine phosphate (H-S-HTP=component B) rather than on methanofuran (MFR) and coenzyme F420 (F420). Methyl-H4MPT was identified as an intermediate. This compound accumulated when H-S-CoM and H-S-HTP were omitted from the assays. These and previous results indicate that methanogenesis from acetate proceeds via acetyl phosphate, acetyl-CoA, methyl-H4MPT, and CH3-S-CoM as intermediates. The disproportionation of formaldehyde to CO2 and CH4 was also studied. This reaction was shown to be dependent on H4MPT, MFR, F420, H-S-CoM, and H-S-HTP.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-072X
    Keywords: Methanosarcina barkeri ; Acetate metabolism ; Methanogenesis from acetate ; H2 metabolism ; Carbon monoxide dehydrogenase ; Cyanide inhibition ; Nitrous oxide inhibition
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract From our previous studies on the mechanism of methane formation from acetate it was known that cell extracts of acetate-grown Methanosarcina barkeri (100 000 × g supernatant) catalyze the conversion of acetyl-CoA plus tetrahydromethanopterin (=H4MPT) to methyl-H4MPT, CoA, CO2 and presumably H2. We report here that these extracts, in the absence of H4MPT, mediated an isotope exchange between CO2 ([S]0.5 v=0.2% in the gas phase) and the carbonyl group of acetyl-CoA at almost the same specific rate as the above conversion (10 nmol · min−1 · mg protein−1). Both the exchange and the formation of methyl-H4MPT were inhibited by N2O, suggesting that a corrinoid could be the primary methyl group acceptor in the acetyl-CoA C-C-cleavage reaction. Both activities were dependent on the presence of H2 (E0′=−414 mV). Ti(III)citrate (E0′=−480 mV) was found to substitute for H2, indicating a reductive activation of the system. In the presence of Ti(III)citrate it was shown that the formation of CO2 from the carbonyl group of acetyl-CoA is associated with a 1:1 stoichiometric generation of H2. Free CO, a possible intermediate in CO2 and H2 formation, was not detected.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Molecular microbiology 25 (1997), S. 0 
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: Nuclear migration and nuclear positioning are fundamental processes in all eukaryotic cells. They are easily monitored during hyphal growth of filamentous fungi. We expressed the green fluorescent protein (GFP) as a fusion protein with the putative nuclear localization domain of the transcriptional activator stuA in nuclei of Aspergillus nidulans and visualized these organelles in living cells. Nuclear staining was observed in interphase nuclei but not during mitosis. Nuclear division, nuclear migration, septum formation and branching were analysed with time-lapse video microscopy during hyphal extension. Hyphae elongated at 0.1–1.2 μm min−1 and nuclei moved with similar speeds towards the hyphal tip until they had reached a defined position. An individual regulation of nuclear mobility in a given hyphal compartment was observed. Some representative movies are available on the Internet (http://www.blackwell-science.com/products/journals/molextra.htm). Nuclear positioning was also studied at the molecular level. The ApsA protein, which regulates nuclear migration, was localized at the cytoplasmic membrane in germlings and hyphae by immunofluorescence and GFP tagging. A model of nuclear migration, nuclear positioning and the role of ApsA is presented.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    FEMS microbiology letters 199 (2001), S. 0 
    ISSN: 1574-6968
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Laccases are blue-copper enzymes, which oxidize phenolic substrates and thereby reduce molecular oxygen. They are widespread within fungi and are involved in lignin degradation or secondary metabolism such as pigment biosynthesis. Many fungi contain several laccases, not all of whose functions are known. In Aspergillus nidulans one, yA, is expressed during asexual development and converts a yellow precursor to the green pigment. We identified a second laccase gene, which encodes a 66.3-kDa protein 37.6% identical to laccase I of A. nidulans. The protein harbors an N-terminal secretion signal, and three characteristic copper-binding centers. The enzyme localizes at the growing hyphal tip. The gene was therefore named tilA (=tip laccase). Deletion or overexpression of the gene had no discernible phenotype under laboratory conditions.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Aspergillus fumigatus is exceptional among microorganisms in being both a primary and opportunistic pathogen as well as a major allergen. Its conidia production is prolific, and so human respiratory tract exposure is almost constant. A. fumigatus is isolated from human habitats and vegetable ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    The @journal of physical chemistry 〈Washington, DC〉 91 (1987), S. 2227-2230 
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    FEMS microbiology reviews 23 (1999), S. 0 
    ISSN: 1574-6976
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: One of the most striking features of eukaryotic cells is the organization of specific functions into organelles such as nuclei, mitochondria, chloroplasts, the endoplasmic reticulum, vacuoles, peroxisomes or the Golgi apparatus. These membrane-surrounded compartments are not synthesized de novo but are bequeathed to daughter cells during cell division. The successful transmittance of organelles to daughter cells requires the growth, division and separation of these compartments and involves a complex machinery consisting of cytoskeletal components, mechanochemical motor proteins and regulatory factors. Organelles such as nuclei, which are present in most cells in a single copy, must be precisely positioned prior to cytokinesis. In many eukaryotic cells the cleavage plane for cell division is defined by the location of the nucleus prior to mitosis. Nuclear positioning is thus absolutely crucial in the unequal cell divisions that occur during development and embryogenesis. Yeast and filamentous fungi are excellent organisms for the molecular analysis of nuclear migration because of their amenability to a broad variety of powerful analytical methods unavailable in higher eukaryotes. Filamentous fungi are especially attractive models because the longitudinally elongated cells grow by apical tip extension and the organelles are often required to migrate long distances. This review describes nuclear migration in filamentous fungi, the approaches used for and the results of its molecular analysis and the projection of the results to other organisms.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: Environmental signals can be transduced into intracellular responses by the action of MAP kinase cascades. Sequential phosphorylation results in the transient activation of a MAP kinase, which in turn activates certain transcription factors and thus a set of pathway-specific genes. Many steps in this cascade are conserved, and homologues have been discovered from yeast to human. We have characterized the MAPKK kinase, SteC, a homologue of Saccharomyces cerevisiae Ste11, in the filamentous fungus Aspergillus nidulans. The 886-amino-acid-long protein shares the highest similarity to Neurospora crassa Nrc-1. Deletion of the gene in A. nidulans results in a slower growth rate, the formation of more branched hyphae, altered conidiophore morphology, an inhibition of heterokaryon formation and a block of cleistothecium development. The gene is transcriptionally activated during asexual development and controls the phosphorylation of two putative MAP kinases.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: Conventional kinesin is a microtubule-dependent motor protein believed to be involved in a variety of intracellular transport processes. In filamentous fungi, conventional kinesin has been implicated in different processes, such as vesicle migration, polarized growth, nuclear distribution, mitochondrial movement and vacuole formation. To gain further insights into the functions of this kinesin motor, we identified and characterized the conventional kinesin gene, kinA, of the established model organism Aspergillus nidulans. Disruption of the gene leads to a reduced growth rate and a nuclear positioning defect, resulting in nuclear cluster formation. These clusters are mobile and display a dynamic behaviour. The mutant phenotypes are pronounced at 37°C, but rescued at 25°C. The hyphal growth rate at 25°C was even higher than that of the wild type at the same temperature. In addition, kinesin-deficient strains were less sensitive to the microtubule destabilizing drug benomyl, and disruption of conventional kinesin suppressed the cold sensitivity of an α-tubulin mutation (tubA4). These results suggest that conventional kinesin of A. nidulans plays a role in cytoskeletal dynamics, by destabilizing microtubules. This new role of conventional kinesin in microtubule stability could explain the various phenotypes observed in different fungi.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...