ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2014-04-02
    Description: Breast cancer susceptibility gene 1 (BRCA1) is a breast and ovarian cancer tumor suppressor whose loss leads to DNA damage and defective centrosome functions. Despite its tumor suppression functions, BRCA1 is most highly expressed in the embryonic neuroepithelium when the neural progenitors are highly proliferative. To determine its functional significance,...
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2003-05-10
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Brivanlou, Ali H -- Gage, Fred H -- Jaenisch, Rudolf -- Jessell, Thomas -- Melton, Douglas -- Rossant, Janet -- New York, N.Y. -- Science. 2003 May 9;300(5621):913-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Rockefeller University, New York, NY 10021, USA. brvnlou@rockefeller.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12738841" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biological Specimen Banks ; Cell Culture Techniques/methods ; Cell Differentiation ; Cell Division ; *Cell Line ; Culture Media ; Culture Media, Conditioned ; Databases, Factual ; *Embryo Research ; Embryo, Mammalian/*cytology ; Humans ; Quality Control ; Registries ; Research/standards ; Signal Transduction ; Stem Cell Transplantation ; *Stem Cells/cytology/physiology ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2003-08-09
    Description: Amyotrophic lateral sclerosis (ALS) is a progressive, lethal neuromuscular disease that is associated with the degeneration of spinal and brainstem motor neurons, leading to atrophy of limb, axial, and respiratory muscles. The cause of ALS is unknown, and there is no effective therapy. Neurotrophic factors are candidates for therapeutic evaluation in ALS. Although chronic delivery of molecules to the central nervous system has proven difficult, we recently discovered that adeno-associated virus can be retrogradely transported efficiently from muscle to motor neurons of the spinal cord. We report that insulin-like growth factor 1 prolongs life and delays disease progression, even when delivered at the time of overt disease symptoms.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kaspar, Brian K -- Llado, Jeronia -- Sherkat, Nushin -- Rothstein, Jeffrey D -- Gage, Fred H -- AG12992/AG/NIA NIH HHS/ -- AG21876/AG/NIA NIH HHS/ -- NS33958/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2003 Aug 8;301(5634):839-42.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12907804" target="_blank"〉PubMed〈/a〉
    Keywords: Amyotrophic Lateral Sclerosis/pathology/physiopathology/*therapy ; Animals ; Apoptosis ; Base Sequence ; Caspase 9 ; Caspases/metabolism ; Cell Count ; Dependovirus/*genetics ; Disease Models, Animal ; Disease Progression ; Gene Transfer Techniques ; *Genetic Therapy ; *Genetic Vectors/administration & dosage ; Glial Cell Line-Derived Neurotrophic Factor ; Green Fluorescent Proteins ; Insulin-Like Growth Factor I/*genetics ; Luminescent Proteins/genetics ; Male ; Mice ; Mice, Transgenic ; Molecular Sequence Data ; Motor Neurons/pathology/virology ; Muscle, Skeletal/virology ; Nerve Growth Factors/genetics ; *Protein-Serine-Threonine Kinases ; Proto-Oncogene Proteins/metabolism ; Proto-Oncogene Proteins c-akt ; Random Allocation ; Spinal Cord/chemistry/pathology/virology ; Superoxide Dismutase/genetics/metabolism ; Ubiquitin/analysis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2000-02-26
    Description: Neural stem cells exist not only in the developing mammalian nervous system but also in the adult nervous system of all mammalian organisms, including humans. Neural stem cells can also be derived from more primitive embryonic stem cells. The location of the adult stem cells and the brain regions to which their progeny migrate in order to differentiate remain unresolved, although the number of viable locations is limited in the adult. The mechanisms that regulate endogenous stem cells are poorly understood. Potential uses of stem cells in repair include transplantation to repair missing cells and the activation of endogenous cells to provide "self-repair. " Before the full potential of neural stem cells can be realized, we need to learn what controls their proliferation, as well as the various pathways of differentiation available to their daughter cells.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gage, F H -- N01-NS-6-2348/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2000 Feb 25;287(5457):1433-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Salk Institute, Laboratory of Genetics, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA. gage@salk.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10688783" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Brain/*cytology/embryology ; Cell Death ; Cell Differentiation ; Cell Division ; Cell Movement ; Cell Separation ; Embryo, Mammalian/cytology ; Humans ; Neurons/*cytology/physiology ; Spinal Cord/cytology/embryology ; Stem Cell Transplantation ; *Stem Cells/cytology/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1988-12-16
    Description: Fibroblasts were genetically modified to secrete nerve growth factor (NGF) by infection with a retroviral vector and then implanted into the brains of rats that had surgical lesions of the fimbria-fornix. The grafted cells survived and produced sufficient NGF to prevent the degeneration of cholinergic neurons that would die without treatment. In addition, the protected cholinergic cells sprouted axons that projected in the direction of the cellular source of NGF. These results indicate that a combination of gene transfer and intracerebral grafting may provide an effective treatment for some disorders of the central nervous system.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rosenberg, M B -- Friedmann, T -- Robertson, R C -- Tuszynski, M -- Wolff, J A -- Breakefield, X O -- Gage, F H -- AG06088/AG/NIA NIH HHS/ -- HD20034/HD/NICHD NIH HHS/ -- NS24279/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 1988 Dec 16;242(4885):1575-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pediatrics, University of California School of Medicine, La Jolla 92093.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/3201248" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylcholinesterase/metabolism ; Animals ; Brain/cytology/enzymology/*pathology ; Cell Survival ; DNA/genetics ; Fibroblasts/metabolism/*transplantation ; Genetic Vectors ; Histocytochemistry ; Moloney murine leukemia virus/genetics ; Nerve Growth Factors/genetics/*physiology ; Rats
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2008-02-01
    Description: Neurogenesis persists in the adult brain and can be regulated by a plethora of external stimuli, such as learning, memory, exercise, environment and stress. Although newly generated neurons are able to migrate and preferentially incorporate into the neural network, how these cells are molecularly regulated and whether they are required for any normal brain function are unresolved questions. The adult neural stem cell pool is composed of orphan nuclear receptor TLX-positive cells. Here, using genetic approaches in mice, we demonstrate that TLX (also called NR2E1) regulates adult neural stem cell proliferation in a cell-autonomous manner by controlling a defined genetic network implicated in cell proliferation and growth. Consequently, specific removal of TLX from the adult mouse brain through inducible recombination results in a significant reduction of stem cell proliferation and a marked decrement in spatial learning. In contrast, the resulting suppression of adult neurogenesis does not affect contextual fear conditioning, locomotion or diurnal rhythmic activities, indicating a more selective contribution of newly generated neurons to specific cognitive functions.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhang, Chun-Li -- Zou, Yuhua -- He, Weimin -- Gage, Fred H -- Evans, Ronald M -- England -- Nature. 2008 Feb 21;451(7181):1004-7. doi: 10.1038/nature06562. Epub 2008 Jan 30.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, The Salk Institute for Biological Studies, La Jolla, California 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18235445" target="_blank"〉PubMed〈/a〉
    Keywords: Aging ; Animals ; Behavior/*physiology ; Cell Proliferation ; Conditioning (Psychology) ; Fear/physiology ; Hippocampus/cytology/metabolism ; Learning/*physiology ; Memory/physiology ; Mice ; Mice, Inbred C57BL ; Neurons/*cytology/*metabolism ; Receptors, Cytoplasmic and Nuclear/deficiency/genetics/*metabolism ; Stem Cells/cytology/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2009-08-07
    Description: Long interspersed element 1 (LINE-1 or L1) retrotransposons have markedly affected the human genome. L1s must retrotranspose in the germ line or during early development to ensure their evolutionary success, yet the extent to which this process affects somatic cells is poorly understood. We previously demonstrated that engineered human L1s can retrotranspose in adult rat hippocampus progenitor cells in vitro and in the mouse brain in vivo. Here we demonstrate that neural progenitor cells isolated from human fetal brain and derived from human embryonic stem cells support the retrotransposition of engineered human L1s in vitro. Furthermore, we developed a quantitative multiplex polymerase chain reaction that detected an increase in the copy number of endogenous L1s in the hippocampus, and in several regions of adult human brains, when compared to the copy number of endogenous L1s in heart or liver genomic DNAs from the same donor. These data suggest that de novo L1 retrotransposition events may occur in the human brain and, in principle, have the potential to contribute to individual somatic mosaicism.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2909034/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2909034/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Coufal, Nicole G -- Garcia-Perez, Jose L -- Peng, Grace E -- Yeo, Gene W -- Mu, Yangling -- Lovci, Michael T -- Morell, Maria -- O'Shea, K Sue -- Moran, John V -- Gage, Fred H -- GM069985/GM/NIGMS NIH HHS/ -- GM082970/GM/NIGMS NIH HHS/ -- MH082070/MH/NIMH NIH HHS/ -- NS048187/NS/NINDS NIH HHS/ -- P20 GM069985/GM/NIGMS NIH HHS/ -- P20 GM069985-010001/GM/NIGMS NIH HHS/ -- R01 GM060518/GM/NIGMS NIH HHS/ -- R01 GM082970/GM/NIGMS NIH HHS/ -- R01 GM082970-03/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2009 Aug 27;460(7259):1127-31. doi: 10.1038/nature08248. Epub 2009 Aug 5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Genetics, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19657334" target="_blank"〉PubMed〈/a〉
    Keywords: 5' Untranslated Regions/genetics ; Brain/cytology ; Cell Line ; Chromatin Immunoprecipitation ; DNA Methylation ; Embryonic Stem Cells/*cytology/*metabolism ; Fetus/cytology ; Gene Dosage ; Humans ; Neurons/*cytology/*metabolism ; Polymerase Chain Reaction ; Retroelements/*genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2010-11-19
    Description: Long interspersed nuclear elements-1 (LINE-1 or L1s) are abundant retrotransposons that comprise approximately 20% of mammalian genomes. Active L1 retrotransposons can impact the genome in a variety of ways, creating insertions, deletions, new splice sites or gene expression fine-tuning. We have shown previously that L1 retrotransposons are capable of mobilization in neuronal progenitor cells from rodents and humans and evidence of massive L1 insertions was observed in adult brain tissues but not in other somatic tissues. In addition, L1 mobility in the adult hippocampus can be influenced by the environment. The neuronal specificity of somatic L1 retrotransposition in neural progenitors is partially due to the transition of a Sox2/HDAC1 repressor complex to a Wnt-mediated T-cell factor/lymphoid enhancer factor (TCF/LEF) transcriptional activator. The transcriptional switch accompanies chromatin remodelling during neuronal differentiation, allowing a transient stimulation of L1 transcription. The activity of L1 retrotransposons during brain development can have an impact on gene expression and neuronal function, thereby increasing brain-specific genetic mosaicism. Further understanding of the molecular mechanisms that regulate L1 expression should provide new insights into the role of L1 retrotransposition during brain development. Here we show that L1 neuronal transcription and retrotransposition in rodents are increased in the absence of methyl-CpG-binding protein 2 (MeCP2), a protein involved in global DNA methylation and human neurodevelopmental diseases. Using neuronal progenitor cells derived from human induced pluripotent stem cells and human tissues, we revealed that patients with Rett syndrome (RTT), carrying MeCP2 mutations, have increased susceptibility for L1 retrotransposition. Our data demonstrate that L1 retrotransposition can be controlled in a tissue-specific manner and that disease-related genetic mutations can influence the frequency of neuronal L1 retrotransposition. Our findings add a new level of complexity to the molecular events that can lead to neurological disorders.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3059197/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3059197/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Muotri, Alysson R -- Marchetto, Maria C N -- Coufal, Nicole G -- Oefner, Ruth -- Yeo, Gene -- Nakashima, Kinichi -- Gage, Fred H -- 1-DP2-OD006495-01/OD/NIH HHS/ -- DP2 OD006495/OD/NIH HHS/ -- DP2 OD006495-01/OD/NIH HHS/ -- R01 MH088485/MH/NIMH NIH HHS/ -- R01 MH088485-03/MH/NIMH NIH HHS/ -- R01MH088485/MH/NIMH NIH HHS/ -- England -- Nature. 2010 Nov 18;468(7322):443-6. doi: 10.1038/nature09544.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉University of California San Diego, School of Medicine, Department of Pediatrics/Rady Children's Hospital San Diego, La Jolla, California 92093-0695, USA. muotri@ucsd.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21085180" target="_blank"〉PubMed〈/a〉
    Keywords: 5' Untranslated Regions/genetics ; Animals ; Brain/cytology/metabolism ; DNA Methylation ; Gene Silencing ; Humans ; Induced Pluripotent Stem Cells/metabolism ; Long Interspersed Nucleotide Elements/*genetics ; Male ; Methyl-CpG-Binding Protein 2/deficiency/genetics/*metabolism ; Methylation ; Mice ; Neuroepithelial Cells/metabolism ; Neurons/*metabolism ; Organ Specificity ; Promoter Regions, Genetic/genetics ; Rats ; Recombination, Genetic/*genetics ; Rett Syndrome/genetics/pathology ; Transcription, Genetic/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2009-07-11
    Description: The dentate gyrus (DG) of the mammalian hippocampus is hypothesized to mediate pattern separation-the formation of distinct and orthogonal representations of mnemonic information-and also undergoes neurogenesis throughout life. How neurogenesis contributes to hippocampal function is largely unknown. Using adult mice in which hippocampal neurogenesis was ablated, we found specific impairments in spatial discrimination with two behavioral assays: (i) a spatial navigation radial arm maze task and (ii) a spatial, but non-navigable, task in the mouse touch screen. Mice with ablated neurogenesis were impaired when stimuli were presented with little spatial separation, but not when stimuli were more widely separated in space. Thus, newborn neurons may be necessary for normal pattern separation function in the DG of adult mice.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2997634/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2997634/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Clelland, C D -- Choi, M -- Romberg, C -- Clemenson, G D Jr -- Fragniere, A -- Tyers, P -- Jessberger, S -- Saksida, L M -- Barker, R A -- Gage, F H -- Bussey, T J -- NS-050217/NS/NINDS NIH HHS/ -- R01 NS050217/NS/NINDS NIH HHS/ -- R01 NS050217-05/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 2009 Jul 10;325(5937):210-3. doi: 10.1126/science.1173215.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19590004" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cues ; Dentate Gyrus/cytology/*physiology ; Discrimination Learning/*physiology ; Female ; Hippocampus/cytology/*physiology ; Maze Learning ; Memory/*physiology ; Mice ; Mice, Inbred C57BL ; *Neurogenesis ; Neurons/*physiology ; Psychomotor Performance ; *Space Perception
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2013-11-02
    Description: We used single-cell genomic approaches to map DNA copy number variation (CNV) in neurons obtained from human induced pluripotent stem cell (hiPSC) lines and postmortem human brains. We identified aneuploid neurons, as well as numerous subchromosomal CNVs in euploid neurons. Neurotypic hiPSC-derived neurons had larger CNVs than fibroblasts, and several large deletions were found in hiPSC-derived neurons but not in matched neural progenitor cells. Single-cell sequencing of endogenous human frontal cortex neurons revealed that 13 to 41% of neurons have at least one megabase-scale de novo CNV, that deletions are twice as common as duplications, and that a subset of neurons have highly aberrant genomes marked by multiple alterations. Our results show that mosaic CNV is abundant in human neurons.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3975283/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3975283/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉McConnell, Michael J -- Lindberg, Michael R -- Brennand, Kristen J -- Piper, Julia C -- Voet, Thierry -- Cowing-Zitron, Chris -- Shumilina, Svetlana -- Lasken, Roger S -- Vermeesch, Joris R -- Hall, Ira M -- Gage, Fred H -- DP2 OD006493/OD/NIH HHS/ -- DP20D006493-01/DP/NCCDPHP CDC HHS/ -- HHSN2752009000011C/PHS HHS/ -- N01-HD-9-011/HD/NICHD NIH HHS/ -- R01 MH095741/MH/NIMH NIH HHS/ -- New York, N.Y. -- Science. 2013 Nov 1;342(6158):632-7. doi: 10.1126/science.1243472.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24179226" target="_blank"〉PubMed〈/a〉
    Keywords: Aneuploidy ; *DNA Copy Number Variations ; Frontal Lobe/*cytology ; Humans ; Induced Pluripotent Stem Cells/cytology ; Male ; *Mosaicism ; Neural Stem Cells/*cytology ; Neurogenesis ; Neurons/*cytology ; Sequence Analysis, DNA ; Sequence Deletion ; Single-Cell Analysis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...