ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2023-12-05
    Description: A promising approach to improve cloud parameterizations within climate models and thus climate projections is to use deep learning in combination with training data from storm‐resolving model (SRM) simulations. The ICOsahedral Non‐hydrostatic (ICON) modeling framework permits simulations ranging from numerical weather prediction to climate projections, making it an ideal target to develop neural network (NN) based parameterizations for sub‐grid scale processes. Within the ICON framework, we train NN based cloud cover parameterizations with coarse‐grained data based on realistic regional and global ICON SRM simulations. We set up three different types of NNs that differ in the degree of vertical locality they assume for diagnosing cloud cover from coarse‐grained atmospheric state variables. The NNs accurately estimate sub‐grid scale cloud cover from coarse‐grained data that has similar geographical characteristics as their training data. Additionally, globally trained NNs can reproduce sub‐grid scale cloud cover of the regional SRM simulation. Using the game‐theory based interpretability library SHapley Additive exPlanations, we identify an overemphasis on specific humidity and cloud ice as the reason why our column‐based NN cannot perfectly generalize from the global to the regional coarse‐grained SRM data. The interpretability tool also helps visualize similarities and differences in feature importance between regionally and globally trained column‐based NNs, and reveals a local relationship between their cloud cover predictions and the thermodynamic environment. Our results show the potential of deep learning to derive accurate yet interpretable cloud cover parameterizations from global SRMs, and suggest that neighborhood‐based models may be a good compromise between accuracy and generalizability.
    Description: Plain Language Summary: Climate models, such as the ICOsahedral Non‐hydrostatic climate model, operate on low‐resolution grids, making it computationally feasible to use them for climate projections. However, physical processes –especially those associated with clouds– that happen on a sub‐grid scale (inside a grid box) cannot be resolved, yet they are critical for the climate. In this study, we train neural networks that return the cloudy fraction of a grid box knowing only low‐resolution grid‐box averaged variables (such as temperature, pressure, etc.) as the climate model sees them. We find that the neural networks can reproduce the sub‐grid scale cloud fraction on data sets similar to the one they were trained on. The networks trained on global data also prove to be applicable on regional data coming from a model simulation with an entirely different setup. Since neural networks are often described as black boxes that are therefore difficult to trust, we peek inside the black box to reveal what input features the neural networks have learned to focus on and in what respect the networks differ. Overall, the neural networks prove to be accurate methods of reproducing sub‐grid scale cloudiness and could improve climate model projections when implemented in a climate model.
    Description: Key Points: Neural networks can accurately learn sub‐grid scale cloud cover from realistic regional and global storm‐resolving simulations. Three neural network types account for different degrees of vertical locality and differentiate between cloud volume and cloud area fraction. Using a game theory based library we find that the neural networks tend to learn local mappings and are able to explain model errors.
    Description: EC ERC HORIZON EUROPE European Research Council
    Description: Partnership for Advanced Computing in Europe (PRACE)
    Description: NSF Science and Technology Center, Center for Learning the Earth with Artificial Intelligence and Physics (LEAP)
    Description: Deutsches Klimarechenzentrum
    Description: Columbia sub‐award 1
    Description: https://github.com/agrundner24/iconml_clc
    Description: https://doi.org/10.5281/zenodo.5788873
    Description: https://code.mpimet.mpg.de/projects/iconpublic
    Keywords: ddc:551.5 ; cloud cover ; parameterization ; machine learning ; neural network ; explainable AI ; SHAP
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-02-21
    Description: Emergent constraints on carbon cycle feedbacks in response to warming and increasing atmospheric CO〈sub〉2 〈/sub〉 concentration have previously been identified in Earth system models participating in the Coupled Model Intercomparison Project (CMIP) Phase 5. Here, we examine whether two of these emergent constraints also hold for CMIP6. The spread of the sensitivity of tropical land carbon uptake to tropical warming in an idealized simulation with a 1% per year increase of atmospheric CO〈sub〉2 〈/sub〉 shows only a slight decrease in CMIP6 (−52 ± 35 GtC/K) compared to CMIP5 (−49 ± 40 GtC/K). For both model generations, the observed interannual variability in the growth rate of atmospheric CO〈sub〉2 〈/sub〉 yields a consistent emergent constraint on the sensitivity of tropical land carbon uptake with a constrained range of −37 ± 14 GtC/K for the combined ensemble (i.e., a reduction of ∼30% in the best estimate and 60% in the uncertainty range relative to the multimodel mean of the combined ensemble). A further emergent constraint is based on a relationship between CO〈sub〉2 〈/sub〉 fertilization and the historical increase in the CO〈sub〉2 〈/sub〉 seasonal cycle amplitude in high latitudes. However, this emergent constraint is not evident in CMIP6. This is in part because the historical increase in the amplitude of the CO〈sub〉2 〈/sub〉 seasonal cycle is more accurately simulated in CMIP6, such that the models are all now close to the observational constraint.
    Description: Plain Language Summary: The statistical model of so‐called emergent constraints help to better understand the sensitivity of Earth system processes in a changing climate. Here, we analyze the robustness of two previously found emergent constraints on carbon cycle feedbacks, using models from the Coupled Model Intercomparison Project (CMIP) of Phases 5 and 6. First the decrease of carbon storage in the tropics due to increasing near‐surface air temperatures, which is found to be robust on the choise of model ensemble. Giving a constraint estimate of −52 ± 35 GtC/K for CMIP6 models, being within the range of uncertainty for the previously estimated result for CMIP5. Second, the increase of carbon storage in high latitudes due to CO〈sub〉2 〈/sub〉 fertilization effect, which is found to be not evident among CMIP6 models. This is in part because the historical increase in the amplitude of the CO〈sub〉2 〈/sub〉 seasonal cycle is more accurately simulated in CMIP6, such that the models are all now close to the observational constraint.
    Description: Key Points: An emergent constraint on the sensitivity of tropical land carbon to global warming, originally derived from Coupled Model Intercomparison Project Phase 5 (CMIP5), also holds for CMIP6. The combined CMIP5 + CMIP6 ensemble gives an emergent constraint on the sensitivity of tropical land carbon to global warming of −37 ± 14 GtC/K. An emergent constraint on the fertilization feedback due to rising CO〈sub〉2 〈/sub〉 levels, previously derived, is not evident in CMIP6.
    Description: Horizon 2020 Framework Programme http://dx.doi.org/10.13039/100010661
    Description: ERC
    Description: https://doi.org/10.5281/zenodo.6900341
    Description: https://doi.org/10.5281/zenodo.3387139
    Description: https://github.com/ESMValGroup
    Description: https://docs.esmvaltool.org/
    Keywords: ddc:551 ; carbon cycle ; emergent constraint ; CMIP5 ; CMIP6 ; fertilization effect ; temperature warming
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...