ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-5036
    Keywords: genotypic variation ; Secale cereale ; Triticum aestivum ; Triticum durum ; zinc efficiency ; zinc deficiency
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Effect of zinc (Zn) nutritional status on uptake of inorganic 65Zn was studied in rye (Secale cereale, cv. Aslim), three bread wheat (Triticum aestivum, cvs. Dagdas, Bezostaja, BDME-10) and durum wheat (Triticum durum, cv. Kunduru-1149) cultivars grown for 13 days in nutrient solution under controlled environmental conditions. The cultivars were selected based on their response to Zn deficiency and to Zn fertilization in calcareous soils under field conditions. When grown in Zn-deficient calcareous soil in the field, the rye cultivar had the highest, and the durum wheat the lowest Zn efficiency. Among the bread wheats, BDME-10 showed higher susceptibility to Zn deficiency and Bezostaja and Dagdas were less affected by Zn deficiency. Similarly to field conditions, in nutrient solution visual Zn deficiency symptoms (i.e. necrotic lesions on leaf blade) appeared to be more severe in Kunduru-1149 and BDME-10 and less severe in rye cultivar Aslim. Under Zn deficiency, shoot concentrations of Zn were similar between all cultivars. Cultivars with adequate Zn supply did not differ in uptake and root-to-shoot translocation rate of 65Zn, but under Zn deficiency there were distinct differences; rye showed the highest rate of Zn uptake and the durum wheat the lowest. In the case of bread wheat cultivars, 65Zn uptake rate was about the same and not related to their differential Zn efficiency. Under Zn deficiency, rye had the highest rate of root-to-shoot translocation of 65Zn, while all bread and durum wheat cultivars were similar in their capacity to translocate 65Zn from roots to shoots. When Zn2+ activity in uptake solution ranged between 117 p M and 34550 pM, Zn-efficient and Zn-inefficient bread wheat genotypes were again similar in uptake and root-to-shoot translocation rate of 65Zn. The results indicate that high Zn efficiency of rye can be attributed to its greater Zn uptake capacity from soils. The inability of the durum wheat cultivar Kunduru-1149 to have a high Zn uptake capacity seems to be an important reason for its Zn inefficiency. Differential Zn efficiency between the bread wheat cultivars used in this study is not related to their capacity to take up inorganic Zn.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-5036
    Keywords: cadmium (Cd) ; Cd re-translocation ; durum wheat ; Rb re-translocation ; Triticum durum ; zinc (Zn) ; Zn deficiency
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Effect of varied zinc (Zn) supply (0, 0.1, 1, 5 μM) on re-translocation of radio-labeled cadmium (109Cd) and rubidium (86Rb) from mature leaf to root and other parts of shoot was studied in 11-day-old durum wheat (Triticum durum cv. C-1252) plants grown in nutrient solution under controlled environmental conditions. Application of 109Cd and 86Rb was carried out by immersing the tips (3 cm) of mature leaf in radio-labeled solutions for 10 s at three different times over a 42 h period. Differences in Zn supply for 11 days did not affect plant growth nor did it cause visual leaf symptoms, such as necrosis and chlorosis, at either the lowest or the highest Zn supply. Only at the nil Zn supply (0 μM), shoot and root dry weights tended to decrease and increase, respectively, causing a lower shoot/root dry weight ratio. Partitioning of more dry matter to roots rather than shoots, a typical phenomena for Zn-deficient plants in nutrient solution experiments, indicated existence of a mild Zn deficiency stress at the nil-Zn treatment. Irrespective of Zn supply, plants could, on average, retranslocate 3.8% and 38% of the total absorbed 109Cd and 86Rb from the treated leaf to roots and other parts of shoots within 42 h, respectively. At nil-Zn treatment, 2.8% of the total absorbed 109Cd was re-translocated from the treated leaf, particularly into roots. The highest re-translocation of 109Cd (6.5%) was found in plants supplied with 0.1 μM Zn. Increases in Zn supply from 0.1 μM reduced 109Cd re-translocation from 6.5% to 4.3% at 1 μM Zn and 1.3% at 5 μM Zn. With the exception of the nil-Zn treatment, the proportion of re-translocated 109Cd was greater in the remainder of the shoot than in the roots. Contrary to the 109Cd results, re-translocation of 86Rb was not (at 0, 0.1 and 1 μM Zn), or only slightly (at 5 μM), affected by changing Zn supply. The results indicate an inhibitory action of increased concentrations of Zn in shoot tissues on phloem-mediated Cd transport. This effect is discussed in relation to competitive inhibition of Cd loading into phloem sap by Zn.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1573-5036
    Keywords: barley ; iron deficiency ; light intensity ; phytosiderophore ; wheat ; zinc deficiency
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The effect of varied light intensity (50 – 600 μmol m-2 s-1) on the rate of phytosiderophore release was studied under zinc (Zn) deficiency using a bread (Triticum aestivum L. cv. Aroona) and a durum wheat cultivar (Triticum durum Desf. cv. Durati) differing in zinc (Zn) efficiency and under iron (Fe) deficiency using a barley cultivar (Hordeum vulgare L. Europe). Plants were grown under controlled environmental conditions in nutrient solution for 15 days (wheat plants) or 11 days (barley plants). Phytosiderophore release was determined by measuring capacity of root exudates to mobilize copper (Cu) from a Cu-loaded resin. With increasing light intensity visual Zn deficiency symptoms such as whitish-brown lesions on leaf blade developed rapidly and severely in wheat, particularly in the durum cultivar Durati. In wheat plants supplied well with Zn, increases in light intensity from 100 to 600 μmol m-2 s-1 did not clearly affect the rate of phytosiderophore release. However, under Zn deficiency increases in light intensity markedly enhanced release of phytosiderophores in Zn-deficient Aroona, but not in Zn-inefficient Durati. When Fe-deficient barley cultivar Europe was grown first at 220 μmol m-2 s-1 and then exposed to 600 μmol m-2 s-1 for 24 and 48 h, the rate of release of phytosiderophores was enhanced about 4-fold and 7-fold, respectively. Transfer of Fe-deficient plants from 600 to 50 μmol m-2 s-1 for 48 h reduced the rate of release of phytosiderophores by a factor of 7. The effect of light on phytosiderophore release was similar regardless of whether the rate of phytosiderophore release was expressed per plant or per unit dry weight of roots. The results demonstrate a particular role of light intensity in phytosiderophore release from roots under both Zn and Fe deficiency. It is suggested that in the studies concerning the role of phytosiderophore release in expression of Zn or Fe efficiency among and within cereals, a special attention should be given to the light conditions.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1573-5060
    Keywords: cereals ; genotypical differences ; zinc deficiency ; zinc efficiency
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Greenhouse and growth chamber experiments were carried out using seven bread wheat (Triticum aestivum), three durum wheat (T. durum), two rye (Secale cereale), three barley (Hordeum vulgare), two triticale (x Triticosecale Wittmack) and one oat (Avena sativa) cultivars to study response to zinc (Zn) deficiency and Zn fertilisation in nutrient solution and in a severely Zn deficient calcareous soil. Visual Zn deficiency symptoms, such as whitish-brown necrotic patches on leaf blades, developed rapidly and severely in the durum wheat and oat cultivars. Bread wheat showed great genotypic differences in sensitivity to Zn deficiency. In triticale and rye, visual deficiency symptoms were either absent or appeared only slightly, while barley showed a moderate sensitivity. When grown in soil, average decreases in shoot dry matter production due to Zn deficiency were 15% for rye, 25% for triticale, 34% for barley, 42% for bread wheat, 63% for oat and 65% for durum wheat. Differential Zn efficiency among and within cereal species was better related to the total amount of Zn per shoot, but not to the Zn concentration in the shoot dry matter. However, in leaves of Zn efficient rye and bread wheat cultivars, the activity of Zn-containing superoxide dismutase was greater than in Zn inefficient bread and durum wheat cultivars, suggesting higher amounts of physiologically active Zn in leaf tissue of efficient genotypes. When grown in nutrient solution, there was a poor relationship between Zn efficiency and release rate of Zn-chelating phytosiderophores from roots, but uptake of labelled Zn (65Zn) and its translocation to the shoot was higher in the Zn efficient rye and bread wheat cultivars than in inefficient bread and durum wheat cultivars. The results demonstrate that susceptibility of cereals to Zn deficiency decline in the order durum wheat 〉 oat 〉 bread wheat 〉 barley 〉 triticale 〉 rye. The results also show that expression of high Zn efficiency in cereals was causally related to enhanced capability of genotypes to take up Zn from soils and use it efficiently in tissues.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...