ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Publisher
Years
  • 1
    Publication Date: 2011-06-08
    Description: Data from the National Centers for Environmental Prediction/National Center for Atmospheric Research and European Center for Medium-Range Weather Forecasts 40 year reanalyses are used to relate large-scale synoptic circulation patterns to local weather at several locations across Alaska. These results are compared to available National Weather Service observations to demonstrate the utility of this method such that it can be applied in future work at locations where local observations are not available. The focus of these comparisons is on surface observations of temperature. The results from the two reanalysis data sets match well to each other and to the observations. Synoptic patterns associated with warm/cold days at five National Weather Service stations representing different climate regions throughout Alaska are identified. In addition, a method to attribute a change in climate to circulation and noncirculation differences is applied to a known climate shift, the Pacific climate shift of 1976, which was associated with an increase in temperatures throughout Alaska. The results from this analysis show that general warming rather than changes in circulation is primarily responsible for the increase in temperatures after 1976.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-05-25
    Description: There is growing recognition that reductions in Arctic sea ice extent will influence patterns of atmospheric circulation both within and beyond the Arctic. We explore the impact of 2007 ice conditions (the second lowest Arctic sea ice extent in the satellite era) on atmospheric circulation and surface temperatures and fluxes through a series of model experiments with the NCAR Community Atmospheric Model version 3 (CAM3). Two 30-year simulations were performed; one using climatological sea ice extent for the end of the 20th century and other using observed sea ice extent from 2007. Circulation differences over the Northern Hemisphere were most prominent during autumn and winter with lower sea level pressure (SLP) and tropospheric pressure simulated over much of the Arctic for the 2007 sea ice experiment. The atmospheric response to 2007 ice conditions was much weaker during summer, with negative SLP anomalies simulated from Alaska across the Arctic to Greenland. Higher temperatures and larger surface fluxes to the atmosphere in areas of anomalous open water were also simulated. CAM3 experiment results were compared to observed SLP anomalies from the National Center for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) Reanalysis data. The observed SLP anomalies during spring are nearly opposite to those simulated. In summer, large differences were shown between the observed and simulated SLP also, suggesting that the sea ice conditions in the months preceding and during the summer of 2007 were not responsible for creating an atmospheric circulation pattern which favoured the large observed sea ice loss. The simulated and observed atmospheric circulation anomalies during autumn and winter were more similar than spring and summer, with the exception of a strong high pressure system in the Beaufort Sea which was not simulated, suggesting that the forced atmospheric response to reduced sea ice was in part responsible for the observed atmospheric circulation anomalies during autumn and winter.
    Print ISSN: 0899-8418
    Electronic ISSN: 1097-0088
    Topics: Geosciences , Physics
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-08-12
    Description: Data from four reanalyses are analyzed to evaluate the downstream atmospheric response both spatially and temporally to anomalous autumn surface forcing in the Arctic Basin. Running weekly mean skin temperature anomalies were classified using the self-organizing map algorithm. The resulting classes were used to both composite the initial atmospheric state and determine how the atmosphere evolves from this state. The strongest response was to anomalous forcing - positive skin temperature and total surface energy flux anomalies and reduced sea ice concentration - in the Barents and Kara Seas. Analysis of the evolution of the atmospheric state for 12 weeks after the initial forcing showed a persistence in the anomalies in this area which led to a build up of heat in the atmosphere. This resulted in positive 1000-500hPa thickness and high pressure circulation anomalies in this area which were associated with cold air advection and temperatures over much of central and northern Asia. Evaluation of days with the opposite forcing (i.e. negative skin temperature anomalies and increased sea ice concentration in the Barents and Kara Seas) showed a mirrored, opposite downstream atmospheric response. Other patterns with positive skin temperature anomalies in the Arctic Basin did not show the same response most likely because the anomalies were not as strong nor did they persist for as many weeks following the initial forcing.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2016-12-13
    Description: ABSTRACT The atmospheric state and synoptic situation associated with widespread summer June, July, and August temperature extremes in southern Alaska is explored. Using ERA-Interim data and a self-organizing map framework, the evolution of the atmospheric state leading up to days that are defined as experiencing extreme surface temperature are compared with the evolution for non-extreme days. The variables evaluated include circulation at the surface and aloft and surface radiative fluxes. For warm extremes, blocking evident in the 500 hPa flow combined with anomalously large surface downward shortwave radiation allowed surface temperatures to become extreme. For cold extremes, an upper level trough and cold air advection aloft coupled with a more minor role of anomalously negative surface downward shortwave radiation were important. The self-organizing map framework allowed an investigation of these details beyond a composite analysis of all extremes.
    Print ISSN: 0899-8418
    Electronic ISSN: 1097-0088
    Topics: Geosciences , Physics
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...