ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Publisher
Language
  • 1
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Journal of Insect Physiology 24 (1978), S. 87-95 
    ISSN: 0022-1910
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-09-02
    Description: Strokkur_1yr is a one year seismological experiment realized at the most active geyser on Iceland by Eva Eibl (University of Potsdam) in collaboration with Thomas R. Walter, Phillippe Jousset, Torsten Dahm, Masoud Allahbakhshi, Daniel Müller from GFZ Potsdam and Gylfi P. Hersir from ISOR Iceland. The geyser is part of the Haukadalur geothermal area in south Iceland, which contains numerous geothermal anomalies, hot springs, and basins (Walter et al., 2018). Strokkur is a pool geyser and has a silica sinter edifice with a water basin on top, which is about 12 m in diameter with a central tube of more than 20 m depth. The aim of the seismic experiment is to monitor eruptions of Strokkur geyser from June 2017 to June 2018 using four broadband seismic stations (Nanometrics Trillium Compact Posthole 20 s). Sensors were buried 30–40 cm deep in the ground at distances of 38.8 m (G4, SE), 47.3 m (G3, SW), 42.5 m (G2, N), and 95.5 m (G1, NE) from Strokkur center. Data gaps represent 15–44 % of the records as during the winter period maintenance intervals were longer and battery drainage was high. However, at any given time, at least one station recorded the eruptions. From this dataset, converted to MSEED using Pyrocko, a catalogue of 70,000 eruptions was determined and further investigated in Eibl et al. (2020). Waveform data are available from the GEOFON data centre, under network code 7L.
    Language: English
    Type: info:eu-repo/semantics/workingPaper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-02-12
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    In:  Journal of Geophysical Research: Solid Earth
    Publication Date: 2022-12-22
    Description: A volcanic eruption is usually preceded by seismic precursors, but their interpretation and use for forecasting the eruption onset time remain a challenge. A part of the eruptive processes in open conduits of volcanoes may be similar to those encountered in geysers. Since geysers erupt more often, they are useful sites for testing new forecasting methods. We tested the application of Permutation Entropy (PE) as a robust method to assess the complexity in seismic recordings of the Strokkur geyser, Iceland. Strokkur features several minute-long eruptive cycles, enabling us to verify in 63 recorded cycles whether PE behaves consistently from one eruption to the next one. We performed synthetic tests to understand the effect of different parameter settings in the PE calculation. Our application to Strokkur shows a distinct, repeating PE pattern consistent with previously identified phases in the eruptive cycle. We find a systematic increase in PE within the last 15 s before the eruption, indicating that an eruption will occur. We quantified the predictive power of PE, showing that PE performs better than seismic signal strength or quiescence when it comes to forecasting eruptions.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-11-11
    Description: The eruption frequency of geysers can be studied easily on the surface. However, details of the internal structure including possible water and gas filled chambers feeding eruptions and the driving mechanisms often remain elusive. We used a multidisciplinary network of seismometers, video cameras, water pressure sensors and one tiltmeter to study the eruptive cycle, internal structure, and mechanisms driving the eruptive cycle of Strokkur geyser in June 2018. An eruptive cycle at Strokkur always consists of four phases: (1) Eruption, (2) post-eruptive conduit refilling, (3) gas filling of the bubble trap, and (4) regular bubble collapse at shallow depth in the conduit. For a typical single eruption 19 ± 4 bubble collapses occur in Phase 3 and 8 ± 2 collapses in Phase 4 at a mean spacing of 1.52 ± 0.29 and 24.5 ± 5.9 s, respectively. These collapses release latent heat to the fluid in the bubble trap (Phase 3) and later to the fluid in the conduit (Phase 4). The latter eventually reaches thermodynamic conditions for an eruption. Single to sextuple eruptions have similar spacings between bubble collapses and are likely fed from the same bubble trap at 23.7 ± 4.4 m depth, 13–23 m west of the conduit. However, the duration of the eruption and recharging phase linearly increases likely due to a larger water, gas and heat loss from the system. Our tremor data provides documented evidence for a bubble trap beneath a pool geyser.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2020-09-02
    Description: Geysers are accessible sites of hot pots, springs and pools that regularly erupt. To investigate the frequency and dynamics of water eruptions we setup a local broadband seismic network at Strokkur geyser, Iceland. The experiment was running for 1 year, from June 2017 to June 2018. Four broadband seismic stations (Nanometrics Trillium Compact Posthole 20s) were buried 30-40 cm deep in the ground at a distance of 39 m (G4, SE), 47 m (G3, SW), 43m (G2, N) and 96 m (G1, NE) from the center of the Strokkur pool geyser. Regular visits and 2-month interval battery replacement allowed to power the stations without solar panels, therewith limiting visibility and site impact. From this data we picked a catalog of 73,466 eruptions, that are statistically further evaluated in Eibl et al. (2020), allowing to distinguish 50,135 single eruptions, and over 20,000 multiplet eruptions (i.e. several eruptions in close succession). The mean waiting time after an eruption at Strokkur linearly increased from 3.7 to 16.4 min for single and multiplets, respectively. This data publications releases the catalog of 73,466 eruptions.
    Language: English
    Type: info:eu-repo/semantics/workingPaper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2020-12-11
    Description: Geysers are hot springs whose frequency of water eruptions remain poorly understood. We set up a local broadband seismic network for 1 year at Strokkur geyser, Iceland, and developed an unprecedented catalog of 73,466 eruptions. We detected 50,135 single eruptions but find that the geyser is also characterized by sets of up to six eruptions in quick succession. The number of single to sextuple eruptions exponentially decreased, while the mean waiting time after an eruption linearly increased (3.7 to 16.4 min). While secondary eruptions within double to sextuple eruptions have a smaller mean seismic amplitude, the amplitude of the first eruption is comparable for all eruption types. We statistically model the eruption frequency assuming discharges proportional to the eruption multiplicity and a constant probability for subsequent events within a multituple eruption. The waiting time after an eruption is predictable but not the type or amplitude of the next one.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2020-10-28
    Language: English
    Type: info:eu-repo/semantics/conferenceObject
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2020-02-12
    Type: info:eu-repo/semantics/conferenceObject
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2021-04-16
    Description: We provide seismological data from a huddle test in Fürstenfeldbruck in August 2019 that was realized by University of Potsdam (PI: Eva Eibl) in collaboration with BGR (PI: Stefanie Donner) and LMU (PI: Felix Bernauer). 5 rotational sensors (blueSeis-3A) and 3 seismometers (Trillium Horizon 120s Nanometrics) were installed on a decoupled basement in a building of the Geophysical Observatory Fürstenfeldbruck. The seismometers were isolated with black foam rubber and white cotton. We recorded passive seismological data for one week and recorded noise, coherent noise sources and the August 29, 2019 ML 3.4 Dettingen earthquake. The aim of the seismic experiment is to compare the performance of rotational sensors and seismometers with respect to different coherent and incoherent noise sources. The noise level, spectral content of the coherent noise and back azimuth of the Dettingen earthquake was further investigated for all sensors using correlation, coherence analysis and probabilistic power spectral densities in Izgi et al. (2021). Waveform data are available from the GEOFON data centre, under network code X3 under CC-BY 4.0 license.
    Language: English
    Type: info:eu-repo/semantics/workingPaper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...