ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 1984-01-01
    Print ISSN: 0018-2222
    Electronic ISSN: 1432-119X
    Topics: Biology , Medicine
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-08-24
    Description: Force output and fatigue and recovery patterns were studied during intermittent short-term exercise. 27 men performed three bouts of 30 maximal unilateral knee extensions on 2 different occasions. Blood flow was maintained or occluded during recovery periods (60 s). Blood flow was restricted by inflating a pneumatic cuff placed around the proximal thigh. Muscle biopsies from vastus lateralis were analyzed for identification of fast twitch (FT) and slow twitch (ST) fibers and relative FT area. Peak torque decreased during each bout of exercise and more when blood flow was restricted during recovery. Initial peak torque (IPT) and average peak torque (APT) decreased over the three exercise bouts. This response was 3 fold greater without than with blood flow during recovery. IPT and APT decreased more in individuals with mainly FT fibers than in those with mainly ST fibers. It is suggested that performance during repeated bouts of maximal concentric contractions differs between individuals with different fiber type composition. Specifically, in high intensity, intermittent exercise with emphasis on anaerobic energy release a high FT composition may not necessarily be advantageous for performance.
    Keywords: Life Sciences (General)
    Type: European journal of applied physiology and occupational physiology (ISSN 0301-5548); Volume 58; 1-2; 81-6
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-24
    Description: This brief review concerns acute and chronic metabolic responses to resistive-type exercise (RTE) (i.e., Olympic/power weight lifting and bodybuilding). Performance of RTE presents power output substantially greater (10-15-fold) than that evident with endurance-type exercise. Accordingly, RTE relies heavily on the anaerobic enzyme machinery of skeletal muscle for energy supply, with alterations in the rate of aerobic metabolism being modest. Hydrolysis of high energy phosphate compounds (PC, ATP), glycogenolysis, and glycolysis are evident during an acute bout of RTE as indicated by metabolic markers in mixed fiber type skeletal muscle samples. The type of RTE probably influences the magnitude of these responses since the increase in blood lactate is much greater during a typical "bodybuilding" than "power lifting" session. The influence of RTE training on acute metabolic responses to RTE has received little attention. An individual's inherent metabolic characteristics are apparently sufficient to meet the energy demands of RTE as training of this type does not increase VO2max or substantially alter the content of marker enzymes in mixed fiber type skeletal muscle. Analyses of pools of fast- vs slow-twitch fibers, however, indicate that RTE-induced changes may be fiber type specific. Future studies should better delineate the metabolic responses to RTE and determine whether these are related to the enhanced performance associated with such training.
    Keywords: Life Sciences (General)
    Type: Medicine and science in sports and exercise (ISSN 0195-9131); Volume 20; 5 Suppl; S158-61
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-08-24
    Description: No abstract available
    Keywords: Life Sciences (General)
    Type: Sports medicine (Auckland, N.Z.) (ISSN 0112-1642); Volume 13; 2; 71-7
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2011-08-24
    Description: We had groups of athletes perform sprint and endurance run training independently or concurrently for 8 weeks to examine the voluntary in vivo mechanical responses to each type of training. Pre- and posttraining angle-specific peak torque during knee extension and flexion were determined at 0, 0.84, 1.65, 2.51, 3.35, 4.19, and 5.03 radian.sec-1 and normalized for lean body mass. Knee extension torque in the sprint-trained group increased across all test velocities, the endurance-trained group increased at 2.51, 3.34, 4.19, and 5.03 radian.sec-1, and the group performing the combined training showed no change at any velocity. Knee flexion torque of the sprint and combined groups decreased at 0.84, 1.65, and 2.51 radian.sec-1. Knee flexion torque in the sprint-trained group also decreased at 0 radian.sec-1 and in the combined group at 3.34 radian.sec-1. Knee flexion torque in the endurance-trained group showed no change at any velocity of contraction. Mean knee flexion:extension ratios across the test velocities significantly decreased in the sprint-trained group. Knee extension endurance during 30 seconds of maximal contractions significantly increased in all groups. Only the sprint-trained group showed a significant increase in endurance of the knee flexors. These data suggest that changes in the voluntary in vivo mechanical characteristics of knee extensor and flexor skeletal muscles are specific to the type of run training performed.
    Keywords: Life Sciences (General)
    Type: The American journal of sports medicine (ISSN 0363-5465); Volume 20; 5; 581-6
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2011-08-24
    Description: The limited space flight data suggest that exposure to microgravity decreases muscle strength in humans and muscle mass in lower mammals. Several earth-based models have been used to address the effect of unloading on the human neuromuscular system due to the limited access of biological research to long-term space flight. Bedrest eliminates body weight bearing of both lower limbs. Unilateral lower limb suspension (ULLS), where all ambulatory activity is performed on crutches with an elevated sole on the shoe of one foot, has recently been used to unload one lower limb. The results from studies using these two models support their efficacy. The decrease in strength of m. quadriceps femoris, for example, after four to six weeks of bedrest, ULLS or space flight is 20 to 25 percent. The results from the earth-based studies show that this response can be attributed in part to a decrease in the cross-sectional area of the KE which reflects muscle fiber atrophy. The results from the ground based studies also support the limited flight data and show that reductions in strength are larger in lower than upper limbs and in extensor than flexor muscle groups. They also raise issue with the generally held concept that postural muscle is most affected by unweighting. Slow-twitch fibers in lower limb muscles of mixed fiber type composition and muscle composed mainly of slow-twitch fibers do not preferentially atrophy after bedrest or ULLS. Taken together, the data suggest that unloading causes remarkable adaptations in the neuromuscular system of humans. It should be appreciated, however, that this area of research is in its infancy.
    Keywords: AEROSPACE MEDICINE
    Type: Florida Medical Association, Journal (ISSN 0015-4148); 79; 8; p. 525-529.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2011-08-24
    Description: The purpose of this study was to examine the effect of lower body resistance training on cardiovascular control mechanisms and blood pressure maintenance during an orthostatic challenge. Lower body negative pressure (LBNP) tolerance, carotid-cardiac baroreflex function (using neck chamber pressure), and calf compliance were measured in eight healthy males before and after 19 wk of knee extension and leg press training. Resistance training sessions consisted of four or five sets of 6-12 repetitions of each exercise, performed two times per week. Training increased strength 25 +/- 3 (SE) percent (P = 0.0003) and 31 +/- 6 percent (P = 0.0004), respectively, for the leg press and knee extension exercises. Average fiber size in biopsy samples of m. vastus lateralis increased 21 +/- 5 percent (P = 0.0014). Resistance training had no significant effect on LBNP tolerance. However, calf compliance decreased in five of the seven subjects measured, with the group average changing from 4.4 +/- 0.6 ml.mm Hg-1 to 3.9 +/- 0.3 ml.mm Hg-1 (P = 0.3826). The stimulus-response relationship of the carotid-cardiac baroreflex response shifted to the left on the carotid pressure axis as indicated by a reduction of 6 mm Hg in baseline systolic blood pressure (P = 0.0471). In addition, maximum slope increased from 5.4 +/- 1.3 ms.mm Hg-1 before training to 6.6 +/- 1.6 ms.mm Hg-1 after training (P = 0.0141). Our results suggest the possibility that high resistance, lower extremity exercise training can cause a chronic increase in sensitivity and resetting of the carotid-cardiac baroreflex.
    Keywords: AEROSPACE MEDICINE
    Type: Medicine and Science in Sports and Exercise (ISSN 0195-9131); 24; 7; p. 789-796.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2011-08-24
    Description: The interaction of the muscle chemoreflex and the cardiopulmonary baroreflex with the carotid baroreflex in humans performing exercise was investigated in healthy subjects using specially designed exercise regimen and apparatus. Stimulation of the muscle chemoreflex was achieved by restricting blood flow in the exercising muscles by means of applying a pressure of 50 mm Hg, whereas cardiopulmonary baroreceptors were unloaded by employing LBNP of -20 mm Hg. The carotid baroreceptors were unloaded and stimulated by neck-pressure maneuvers (Sprenkle et al., 1986). Results showed that the cardiodecelerating capacity of the carotid baroreflex remains active during exercise, and may even be sensitized by the chemoreflex-induced increase in arterial pressure; but it is not affected by the cardiopulmonary baroreceptor activity.
    Keywords: AEROSPACE MEDICINE
    Type: Physiologist, Supplement (ISSN 0031-9376); 34; 1, Fe
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2011-08-24
    Description: STUDY DESIGN. Muscle use evoked by exercise was determined by quantifying shifts in signal relaxation times of T2-weighted magnetic resonance images. Images were collected at rest and after exercise at each of two intensities (moderate and intense) for each of four head movements: 1) extension, 2) flexion, 3) rotation, and 4) lateral flexion. OBJECTIVE. This study examined the intensity and pattern of neck muscle use evoked by various movements of the head. The results will help elucidate the pathophysiology, and thus methods for treating disorders of the cervical musculoskeletal system. SUMMARY OF BACKGROUND DATA. Exercise-induced contrast shifts in T2 has been shown to indicate muscle use during the activity. The noninvasive nature of magnetic resonance imaging appears to make it an ideal approach for studying the function of the complex neuromuscular system of the neck. METHODS. The extent of T2 increase was examined to gauge how intensely nine different neck muscles or muscle pairs were used in seven subjects. The absolute and relative cross-sectional area of muscle showing a shift in signal relaxation was assessed to infer the pattern of use among and within individual neck muscles or muscle pairs. RESULTS. Signal relaxation increased with exercise intensity for each head movement. The absolute and relative cross-sectional area of muscle showing a shift in signal relaxation also increased with exercise load. Neck muscles or muscle pairs extensively used to perform each head movement were: extension--semispinalis capitis and cervicis and splenius capitis; flexion--sternocleidomastoid and longus capitis and colli; rotation--splenius capitis, levator scapulae, scalenus, semispinalis capitis ipsilateral to the rotation, and sternocleidomastoid contralateral; and lateral flexion--sternocleidomastoid CONCLUSION. The results of this study, in part, agree with the purported functions of neck muscles derived from anatomic location. This also was true for the few selected muscles that have been examined in human electromyographic studies. Neck muscle function and morphology can be studied at a detailed level using exercise-induced shifts in magnetic resonance images.
    Keywords: Aerospace Medicine
    Type: Spine (ISSN 0362-2436); Volume 20; 23; 2505-12
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2011-08-24
    Description: OBJECTIVE: To test whether unloading increases vulnerability to eccentric exercise-induced dysfunction and muscle injury. DESIGN: Before-after trial. SETTING: General community. PATIENTS OR OTHER PARTICIPANTS: Two women and 5 men (73 +/- 3kg [mean +/- SE]) who were active college students but were not trained in lower body resistance exercise volunteered. INTERVENTION: Five weeks of unilateral lower limb suspension (ULLS), which has been shown to decrease strength and size of the unloaded, left, but not load-bearing, right quadriceps femoris muscle group (QF) by 20% and 14%, respectively; performance of 10 sets of ten eccentric actions with each QF immediately after the ULLS strength tests with a load equivalent to 65% of the post-ULLS eccentric 1-repetition maximum. MAIN OUTCOME MEASURE(S): Concentric and eccentric 1-repetition maximum for the left, unloaded and the right, load-bearing QF measured immediately after ULLS and 1,4,7,9, and 11 days later; cross-sectional area and spin-spin relaxation time (T2) of each QF as determined by magnetic resonance imaging and measured the last day of ULLS and 3 days later. RESULTS: The mean load used for eccentric exercise was 23 +/- 2 and 30 +/- 3kg for the left, unloaded and right, load-bearing QF, respectively. The concentric and eccentric 1-repetition maximum for the unloaded and already weakened left QF was further decreased by 18% (p = .000) and 27% (p = .000), respectively, 1 day after eccentric exercise. Strength did not return to post-ULLS levels until 7 days of recovery. The right, load-bearing QF showed a 4% decrease (p = .002) in the eccentric 1-repetition maximum 1 day after eccentric exercise. The left, unloaded QF showed an increase in T2 (p = .002) in 18% of its cross-sectional area 3 days after the eccentric exercise, thus indicating muscle injury. The right, load-bearing QF showed no elevation in T2 (p = .280). CONCLUSION: Unloading increases vulnerability to eccentric exercise-induced dysfunction and muscle injury, even at relatively light loads.
    Keywords: Aerospace Medicine
    Type: Archives of physical medicine and rehabilitation (ISSN 0003-9993); Volume 77; 8; 773-7
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...