ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2016-12-01
    Print ISSN: 0749-0208
    Electronic ISSN: 1551-5036
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-08-24
    Description: An airborne differential absorption lidar (DIAL) system has been developed at the NASA Langley Research Center for the remote measurement of water vapor (H2O) and aerosols in the lower troposphere. Significant modifications to the laser transmitters and other major subsystems have been implemented during the past two years to improve the system's performance and field reliability. The modified system is to be flight tested in late 1994, and the system performance characteristics and preliminary atmospheric H2O and aerosol data from these flights are discussed in this paper.
    Keywords: Lasers and Masers
    Type: ; 157-159
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-08-24
    Description: In the DIAL technique, the water vapor concentration profile is determined by analyzing the lidar backscatter signals for laser wavelengths tuned 'on' and 'off' a water vapor absorption line. Desired characteristics of the on-line transmitted laser beam include: pulse energy greater than or equal to 100 mJ, high-resolution tuning capability (uncertainty less than 0.25 pm), good spectral stability (jitter less than 0.5 pm about the mean), and high spectral purity (greater than 99 percent). The off-line laser is generally detuned less than 100 pm away from the water vapor line. Its spectral requirements are much less stringent. In our past research, we developed and demonstrated the airborne DIAL technique for water vapor measurements in the 720-nm spectral region using a system based on an alexandrite laser as the transmitter for the on-line wavelength and a Nd:YAG laser-pumped dye laser for the off-line wavelength. This off-line laser has been replaced by a second alexandrite laser. Diode lasers are used to injection seed both lasers for frequency and linewidth control. This eliminates the need for the two intracavity etalons utilized in our previous alexandrite laser and thereby greatly reduces the risk of optical damage. Consequently, the transmitted pulse energy can be substantially increased, resulting in greater measurement range, higher data density, and increased measurement precision. In this paper, we describe the diode injection seed source, the two alexandrite lasers, and the device used to line lock the on-line seed source to the water vapor absorption feature.
    Keywords: Meteorology and Climatology
    Type: ; 47-49
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2004-12-03
    Description: Laser remote sensing from aircraft has become a very important technique for observing ozone in the environment. NASA Langley has an active aircraft based research program which presently uses Nd:YAG-pumped dye lasers that are then doubled into the UV to probe both the stratosphere and troposphere for ozone using the differential absorption lidar (DIAL) technique. This large system can only fly on large (NASA DC-8, Electra) aircraft and has been deployed on many missions throughout the world. In the future it will be desirable to fly autonomous, lightweight, compact ozone DIAL instruments on unpiloted atmospheric vehicles (UAV) aircraft. Such aircraft could fly at high altitudes for extended times collecting science data without risk to the operator. Cost for such missions may be substantially reduced over present large aircraft based missions. Presently there are no ozone DIAL systems capable of flying on an UAV aircraft. In order to facilitate UAV missions, small more efficient laser transmitters need to be developed that emit approximately 25mJ near 300nm for each of the DIAL 'on' and 'off' line pulses. Also lightweight, compact DIAL receiver systems need to be built and demonstrated. Such receiver systems may incorporate fiber optic coupled telescopes for maximum light gathering capability per unit area, high quantum efficiency gated photomultiplier tubes with reasonable gain and very narrow-band filters for background light rejection with high light throughput. A compact high-performance 16-bit digitizer and a data storage system are also required. A conceptional design of such a UAV DIAL instrument is presented. Here a pulsed UV laser emits pulses into the atmosphere where elastic scattering occurs which results in light being scattered into the receiver telescope. The subject of this paper is the design, construction and testing of a robust, compact ozone DIAL receiver system that would be a prototype for eventual use in a UAV aircraft.
    Keywords: Instrumentation and Photography
    Type: Nineteenth International Laser Radar Conference; Part 2; 919-922; NASA/CP-1998-207671/PT2
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2004-12-03
    Description: A new unpiloted air vehicle (UAV) based water vapor DIAL system will be described. This system is expected to offer lower operating costs, longer test duration and severe weather capabilities. A new high-efficiency, compact, light weight, diode-pumped, tunable Cr:LiSAF laser will be developed to meet the UAV payload weight and size limitations and its constraints in cooling capacity, physical size and payload. Similarly, a new receiver system using a single mirror telescope and an avalanche photo diode (APD) will be developed. Projected UAV parameters are expected to allow operation at altitudes up to 20 km, endurance of 24 hrs and speed of 400 km/hr. At these conditions measurements of water vapor at an uncertainty of 2-10% with a vertical resolution of 200 m and horizontal resolution of 10 km will be possible.
    Keywords: Aircraft Design, Testing and Performance
    Type: Nineteenth International Laser Radar Conference; Part 2; 891-894; NASA/CP-1998-207671/PT2
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2004-12-03
    Description: A new 16-bit 6-MHz compact, lightweight waveform digitizer module has been tested using actual 300-nm lidar atmospheric returns. The noise level of this digitizer was tested and found to be substantially below the ozone number density to be measured. The digitizer is inexpensive and compact enough to be deployed in UAV aircraft and spacecraft environments. With 16-bit digitizers a resolution of 0.046 mV/step can be achieved, substantially improving resolution over 12-bit systems. This digitizer will find widespread use in future DIAL receiver systems.
    Keywords: Instrumentation and Photography
    Type: Nineteenth International Laser Radar Conference; Part 2; 863-866; NASA/CP-1998-207671/PT2
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2004-12-03
    Description: A fiber-optic coupled telescope of low complexity was constructed and tested. The major loss mechanisms of the optical system have been characterized. Light collected by the receiver mirror is focused onto an optical fiber, and the output of the fiber is filtered by an interference filter and then focused onto an APD detector. This system was used in lidar field measurements with a 532-nm Nd:YAG laser beam. The results were encouraging. A numerical model used for calculation of the expected return signal agreed with the lidar return signal obtained. The assembled system was easy to align and operate and weighed about 8 kg for a 30 cm (12") mirror system. This weight is low enough to allow mounting of the fiber-optic telescope receiver system in a UAV. Furthermore, the good agreement between the numerical lidar model and the performance of the actual receiver system, suggests that this model may be used for estimation of the performance of this and other lidar systems in the future. Such telescopes are relatively easy to construct and align. The fiber optic cable allows easy placement of the optical detector in any position. These telescope systems should find widespread use in aircraft and space home DIAL water vapor receiver systems.
    Keywords: Optics
    Type: Nineteenth International Laser Radar Conference; Part 2; 857-860; NASA/CP-1998-207671/PT2
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2004-12-03
    Description: Signal-induced noise (SIN) is a common effect resulting when a photomultiplier tube (PMT) is saturated, for a brief moment, with a high intensity light pulse. After the laser pulse is sent into the atmosphere a very large light return, from either the near-field or a cloud, causes the PMT to momentarily saturate. The PMT is gated off at this time so no signal is seen at the anode. When the PMT gate is turned on, the far-field light return from the atmosphere is observed. This signal is distorted, however because of the addition of SIN to the received light signal causing a slower than expected decay of the atmospheric signal return. We have characterized SIN responses to varying parameters of the incident light on the PMT. These varied parameters included incident wavelength, PMT voltage, incident intensity, and tube type. We found that only the amplitude of the SIN was effected by varying PMT voltages and light intensities. The amplitude increased linearly as input light intensity increased. Different incident wavelengths at the same intensity did not effect the amplitude or the temporal behavior of the SIN response. Finally, different PMT tubes with similar physical structures exhibited similar SIN responses although with different amplitudes. The different amplitudes can be attributed to the different gains and operating voltages of each tube. These results suggest that SIN is caused by photocathode electron dynamics such as charge accumulation on internal PMT surfaces. These surfaces then emit the electrons slowly resulting in a long decay noise signal. With the SIN responses characterized we can now try to develop a method to reduce or eliminate SIN in DIAL systems.
    Keywords: Environment Pollution
    Type: Nineteenth International Laser Radar Conference; Part 2; 849-852; NASA/CP-1998-207671/PT2
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2004-12-03
    Description: Measurement of atmospheric water vapor has become a major requirement for understanding moist-air processes. Differential absorption lidar (DIAL) is a technique best suited for the measurement of atmospheric water vapor. NASA Langley Research Center is continually developing improved DIAL systems. One aspect of current development is focused on the enhancement of a DIAL receiver by applying state-of-the-art technology in building a new compact detection system that will be placed directly on the DIAL receiver telescope. The newly developed detection system has the capability of being digitally interfaced with a simple personal computer, using a discrete input/output interface. This has the potential of transmitting digital data over relatively long distances instead of analog signals, which greatly reduces measurement noise. In this paper, we discuss some results from the new compact water vapor DIAL detection system which includes a silicon based avalanche photodiode (APD) detector, a 14-bit, 10-MHz waveform digitizer, a microcontroller and other auxiliary electronics. All of which are contained on a small printed-circuit-board. This will significantly reduce the weight and volume over the current CAMAC system and eventually will be used in a water vapor DIAL system on an unpiloted atmospheric vehicle (UAV) aircraft, or alternatively on an orbiting spacecraft.
    Keywords: Instrumentation and Photography
    Type: Nineteenth International Laser Radar Conference; Part 2; 845-848; NASA/CP-1998-207671/PT2
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2004-12-03
    Description: Signal-induced noise is generated when a photomultiplier tube (PMT) is subjected to an intense light pulse. The PMT signal does not return to the dark current level after the signal is removed, but decays slowly (i.e., signal-induced noise). This is of practical significance for DIAL (Differential Absorption lidar) measurements where signal-induced noise decays are superimposed on the on-line (absorption) and off-line signals. Errors in the ozone density calculation result for stratosphere measurements. Other researchers have implemented mechanical choppers that block the intense pulse which may be from near field return scattering or scattering from a cloud. This configuration cannot be implemented for the DIAL system employed for aircraft measurements since the on-line and off-line pulses are 300 microseconds apart. A scheme has been developed in this study to electronically attenuate the signal induced noise. A ring electrode, external to the PMT photocathode, is utilized to perturb the electron trajectories between the photocathode and the first dynode. This effect has been used for position sensitive PMTs and suggested for gating PMTS.
    Keywords: Instrumentation and Photography
    Type: Nineteenth International Laser Radar Conference; Part 2; 751-754; NASA/CP-1998-207671/PT2
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...