ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2017-03-28
    Description: Lee waves are thought to play a prominent role in Southern Ocean dynamics, facilitating a transfer of energy from the jets of the Antarctic Circumpolar Current to microscale, turbulent motions important in water mass transformations. Two EM-APEX profiling floats deployed in the Drake Passage during the Diapycnal and Isopycnal Mixing Experiment (DIMES) independently measured a 120 ± 20-m vertical amplitude lee wave over the Shackleton Fracture Zone. A model for steady EM-APEX motion is developed to calculate absolute vertical water velocity, augmenting the horizontal velocity measurements made by the floats. The wave exhibits fluctuations in all three velocity components of over 15 cm s−1 and an intrinsic frequency close to the local buoyancy frequency. The wave is observed to transport energy and horizontal momentum vertically at respective peak rates of 1.3 ± 0.2 W m−2 and 8 ± 1 N m−2. The rate of turbulent kinetic energy dissipation is estimated using both Thorpe scales and a method that isolates high-frequency vertical kinetic energy and is found to be enhanced within the wave to values of order 10−7 W kg−1. The observed vertical flux of energy is significantly larger than expected from idealized numerical simulations and also larger than observed depth-integrated dissipation rates. These results provide the first unambiguous observation of a lee wave in the Southern Ocean with simultaneous measurements of its energetics and dynamics.
    Print ISSN: 0022-3670
    Electronic ISSN: 1520-0485
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-07-22
    Description: The physical mechanisms that remove energy from the Southern Ocean’s vigorous mesoscale eddy field are not well understood. One proposed mechanism is direct transfer of energy to the internal wave field in the ocean interior, via eddy-induced straining and shearing of pre-existing internal waves. The magnitude, vertical structure and temporal variability of the rate of energy transfer between eddies and internal waves is quantified from a 14-month deployment of a mooring cluster in the Scotia Sea. Velocity and buoyancy observations are decomposed into wave and eddy components, and the energy transfer is estimated using the Reynolds-averaged energy equation. We find that eddies gain energy from the internal wave field at a rate of –2.2±0.6mW m−2, integrated from the bottom to 566 m below the surface. This result can be decomposed into a positive (eddy to wave) component, equal to 0.2±0.1 mW m−2, driven by horizontal straining of internal waves, and a negative (wave to eddy) component, equal to –2.5±0.6 mW m−2, driven by vertical shearing of the wave spectrum. Temporal variability of the transfer rate is much greater than the mean value. Close to topography, large energy transfers are associated with low-frequency buoyancy fluxes, the underpinning physics of which do not conform to linear wave dynamics and are thereby in need of further research. Our work suggests that eddy-internal wave interactions may play a significant role in the energy balance of the Southern Ocean mesoscale eddy and internal wave fields.
    Print ISSN: 0022-3670
    Electronic ISSN: 1520-0485
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-12-01
    Description: Abyssal waters forming the lower limb of the global overturning circulation flow through the Samoan Passage and are modified by intense mixing. Thorpe-scale-based estimates of dissipation from moored profilers deployed on top of two sills for 17 months reveal that turbulence is continuously generated in the passage. Overturns were observed in a density band in which the Richardson number was often smaller than ¼, consistent with shear instability occurring at the upper interface of the fast-flowing bottom water layer. The magnitude of dissipation was found to be stable on long time scales from weeks to months. A second array of 12 moored profilers deployed for a shorter duration but profiling at higher frequency was able to resolve variability in dissipation on time scales from days to hours. At some mooring locations, near-inertial and tidal modulation of the dissipation rate was observed. However, the modulation was not spatially coherent across the passage. The magnitude and vertical structure of dissipation from observations at one of the major sills is compared with an idealized 2D numerical simulation that includes a barotropic tidal forcing. Depth-integrated dissipation rates agree between model and observations to within a factor of 3. The tide has a negligible effect on the mean dissipation. These observations reinforce the notion that the Samoan Passage is an important mixing hot spot in the global ocean where waters are being transformed continuously.
    Print ISSN: 0022-3670
    Electronic ISSN: 1520-0485
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Carter, G. S., Voet, G., Alford, M. H., Girton, J. B., Mickett, J. B., Klymak, J. M., Pratt, L. J., Pearson-Potts, K. A., Cusack, J. M., & Tan, S. A spatial geography of abyssal turbulent mixing in the Samoan passage. Oceanography, 32(4), (2019): 194-203, doi: 10.5670/oceanog.2019.425.
    Description: High levels of turbulent mixing have long been suspected in the Samoan Passage, an important topographic constriction in the deep limb of the Pacific Meridional Overturning Circulation. Along the length of the passage, observations undertaken in 2012 and 2014 showed the bottom water warmed by ~55 millidegrees Celsius and decreased in density by 0.01 kg m–3. Spatial analysis of this first-ever microstructure survey conducted in the Samoan Passage confirmed there are multiple hotspots of elevated abyssal mixing. This mixing was not just confined to the four main sills—even between sills, the nature of the mixing processes appeared to differ: for example, one sill is clearly a classical hydraulically controlled overflow, whereas another is consistent with mode-2 hydraulic control. When microstructure casts were averaged into 0.1°C conservative temperature classes, the largest dissipation rates and diapycnal diffusivity values (〉10–7 W kg–1 and 10–2 m2 s–1, respectively) occurred immediately downstream of the northern sill in the eastern and deepest channel. Although topographic blocking is the primary reason that no water colder than Θ = 0.7°C is found in the western channel, intensive mixing at the entrance sills appeared to be responsible for eroding an approximately 100 m thick layer of Θ 〈 0.7°C water. Three examples highlighting weak temporal variability, and hence suggesting that the observed spatial patterns are robust, are presented. The spatial variability in mixing over short lateral scales suggests that any simple parameterization of mixing within the Samoan Passage may not be applicable.
    Description: This work was funded by the National Science Foundation under grants OCE-1029268, OCE-1029483, OCE-1657264, OCE-1657870, OCE-1658027, and OCE-1657795.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-07-20
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Tan, S., Pratt, L. J., Voet, G., Cusack, J. M., Helfrich, K. R., Alford, M. H., Girton, J. B., & Carter, G. S. Hydraulic control of flow in a multi-passage system connecting two basins. Journal of Fluid Mechanics, 940, (2022): A8, https://doi.org/10.1017/jfm.2022.212.
    Description: When a fluid stream in a conduit splits in order to pass around an obstruction, it is possible that one branch will be critically controlled while the other remains not so. This is apparently the situation in Pacific Ocean abyssal circulation, where most of the northward flow of Antarctic bottom water passes through the Samoan Passage, where it is hydraulically controlled, while the remainder is diverted around the Manihiki Plateau and is not controlled. These observations raise a number of questions concerning the dynamics necessary to support such a regime in the steady state, the nature of upstream influence and the usefulness of rotating hydraulic theory to predict the partitioning of volume transport between the two paths, which assumes the controlled branch is inviscid. Through the use of a theory for constant potential vorticity flow and accompanying numerical model, we show that a steady-state regime similar to what is observed is dynamically possible provided that sufficient bottom friction is present in the uncontrolled branch. In this case, the upstream influence that typically exists for rotating channel flow is transformed into influence into how the flow is partitioned. As a result, the partitioning of volume flux can still be reasonably well predicted with an inviscid theory that exploits the lack of upstream influence.
    Description: This work was supported by the National Science Foundation under grants OCE-1029268, OCE-1029483, OCE-1657264, OCE-1657795, OCE-1657870 and OCE-1658027.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Cusack, J. M., Brearley, J. A., Garabato, A. C. N., Smeed, D. A., Polzin, K. L., Velzeboer, N., & Shakespeare, C. J. Observed eddy-internal wave interactions in the Southern Ocean. Journal of Physical Oceanography, 50(10), (2020): 3042-3062, doi:10.1175/JPO-D-20-0001.1.
    Description: The physical mechanisms that remove energy from the Southern Ocean’s vigorous mesoscale eddy field are not well understood. One proposed mechanism is direct energy transfer to the internal wave field in the ocean interior, via eddy-induced straining and shearing of preexisting internal waves. The magnitude, vertical structure, and temporal variability of the rate of energy transfer between eddies and internal waves is quantified from a 14-month deployment of a mooring cluster in the Scotia Sea. Velocity and buoyancy observations are decomposed into wave and eddy components, and the energy transfer is estimated using the Reynolds-averaged energy equation. We find that eddies gain energy from the internal wave field at a rate of −2.2 ± 0.6 mW m−2, integrated from the bottom to 566 m below the surface. This result can be decomposed into a positive (eddy to wave) component, equal to 0.2 ± 0.1 mW m−2, driven by horizontal straining of internal waves, and a negative (wave to eddy) component, equal to −2.5 ± 0.6 mW m−2, driven by vertical shearing of the wave spectrum. Temporal variability of the transfer rate is much greater than the mean value. Close to topography, large energy transfers are associated with low-frequency buoyancy fluxes, the underpinning physics of which do not conform to linear wave dynamics and are thereby in need of further research. Our work suggests that eddy–internal wave interactions may play a significant role in the energy balance of the Southern Ocean mesoscale eddy and internal wave fields.
    Description: Funding for DIMES was provided by U.K. Natural Environment Research Council (NERC) Grants NE/E007058/1 and NE/E005667/1. JMC acknowledges the support of a NERC PhD studentship, and ACNG that of the Royal Society and the Wolfson Foundation. NV acknowledges support from the ARC Centre of Excellence for Climate Extremes (CLEX) Honours Scholarship and the ANU PBSA Partnership - Spotless Scholarship. CJS acknowledges support from an ARC Discovery Early Career Researcher Award DE180100087 and an Australian National University Futures Scheme award. Numerical simulations were conducted on the National Computational Infrastructure (NCI) facility, Canberra, Australia. This study has been conducted using E.U. Copernicus Marine Service Information. We thank two anonymous reviewers for their comments which helped to improve the manuscript significantly. Codes and output files are available online at the project repository (https://github.com/jessecusack/DIMES_eddy_wave_interactions).
    Keywords: Southern Ocean ; Eddies ; Internal waves ; Turbulence
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-05-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Cusack, J. M., Voet, G., Alford, M. H., Girton, J. B., Carter, G. S., Pratt, L. J., Pearson-Potts, K. A., & Tan, S. Persistent turbulence in the Samoan Passage. Journal of Physical Oceanography, 49(12), (2019): 3179-3197, doi: 10.1175/JPO-D-19-0116.1.
    Description: Abyssal waters forming the lower limb of the global overturning circulation flow through the Samoan Passage and are modified by intense mixing. Thorpe-scale-based estimates of dissipation from moored profilers deployed on top of two sills for 17 months reveal that turbulence is continuously generated in the passage. Overturns were observed in a density band in which the Richardson number was often smaller than ¼, consistent with shear instability occurring at the upper interface of the fast-flowing bottom water layer. The magnitude of dissipation was found to be stable on long time scales from weeks to months. A second array of 12 moored profilers deployed for a shorter duration but profiling at higher frequency was able to resolve variability in dissipation on time scales from days to hours. At some mooring locations, near-inertial and tidal modulation of the dissipation rate was observed. However, the modulation was not spatially coherent across the passage. The magnitude and vertical structure of dissipation from observations at one of the major sills is compared with an idealized 2D numerical simulation that includes a barotropic tidal forcing. Depth-integrated dissipation rates agree between model and observations to within a factor of 3. The tide has a negligible effect on the mean dissipation. These observations reinforce the notion that the Samoan Passage is an important mixing hot spot in the global ocean where waters are being transformed continuously.
    Description: The authors thank Zhongxiang Xao and Jody Klymak, who provided earlier setups of the numerical model, and also Arjun Jagannathan for insightful discussions on the subject of flow over topography. We also thank John Mickett and Eric Boget for their assistance in designing, deploying, and recovering the moorings. In addition, we also thank the crew and scientists aboard the R/V Revelle and R/V Thompson, without whom the data presented in this paper could not have been gathered. Ilker Fer and two anonymous reviewers provided thoughtful feedback that improved the paper. This work was supported by the National Science Foundation under Grants OCE-1029268, OCE-1029483, OCE-1657264, OCE-1657795, OCE-1657870, and OCE-1658027.
    Keywords: Gravity waves ; Turbulence ; Abyssal circulation ; Mixing ; Tides
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-05-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Girton, J. B., Mickett, J. B., Zhao, Z., Alford, M. H., Voet, G., Cusack, J. M., Carter, G. S., Pearson-Potts, K. A., Pratt, L. J., Tan, S., & Klymak, J. M. Flow-topography interactions in the Samoan Passage. Oceanography, 32(4), (2019): 184-193, doi: 10.5670/oceanog.2019.424.
    Description: Mixing in the Samoan Passage has implications for the abyssal water properties of the entire North Pacific—nearly 20% of the global ocean’s volume. Dense bottom water formed near Antarctica encounters the passage—a gap in a ridge extending from north of Samoa eastward across the Pacific at around 10°S—and forms an energetic cascade much like a river flowing through a canyon. The 2011–2014 Samoan Passage Abyssal Mixing Experiment explored the importance of topography to the dense water flow on a wide range of scales, including (1) constraints on transport due to the overall passage shape and the heights of its multiple sills, (2) rapid changes in water properties along particular pathways at localized mixing hotspots where there is extreme topographic roughness and/or downslope flow acceleration, and (3) diversion and disturbance of flow pathways and density surfaces by small-scale seamounts and ridges. The net result is a complex but fairly steady picture of interconnected pathways with a limited number of intense mixing locations that determine the net water mass transformation. The implication of this set of circumstances is that the dominant features of Samoan Passage flow and mixing (and their responses to variations in incoming or background properties) can be described by the dynamics of a single layer of dense water flowing beneath a less-dense one, combined with mixing and transformation that is determined by the small-scale topography encountered along flow pathways.
    Description: We are grateful to Eric Boget, Andrew Cookson, Sam Fletcher, Trina Litchendorf, and Keith Magness for their assistance in the field program, and to the captains and crews of R/Vs Roger Revelle and Thomas G. Thompson for their excellent ship handling and assistance—without which this work would not have been possible. This work was supported by the National Science Foundation.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...