ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-0991
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract Ozone was found to reduce the numbers of bacteria detectable by plate counts and the numbers of presumptiveLegionella pneumophila (DFA-reactive cells), including those that were INT positive, in test cooling towers. The numbers of DFA-reactiveL. pneumophila eventually reached those of the makeup water (Troy, NY, city water). Microbial slime on the interior tower surfaces andPseudomonas populations in the tower waters were also reduced. Water chemistry parameters measured showed no tendency toward a condition that would cause accelerated deterioration of tower material.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Cellular Physiology 160 (1994), S. 154-162 
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: Cigarette smoking is ranked among the leading risk factors in the etiology of atherosclerotic vascular disease. The mechanisms, however, that link cigarette smoking to increased incidence of atherosclerosis are not understood. The adherence of circulating monocytes to the endothelium, migration into the subendothelium, and subsequent formation of foam cells are principal initial events in the development of atherosclerosis. We therefore determined whether cigarette smoke caused increased adherence of monocytes to endothelial cells and the cellular mechanism of this increased adherence. Cigrette smoke condensate (CSC), the particulate fraction of cigarette smoke derived from 2R1 standard research cigarettes, at a concentration of 25-30 μg/ml (average yield of CSC is 26.1 mg/cigarette), augmented (70-90%) basal adherence of human peripheral blood monocytes to a cultured monolayer of endothelial cells derived from bovine aorta (BAEC) and human umbilical vein (HUVEC). There was a concomitant increase in the expression of CD11b ligand on the surface of monocytes as determined by flow cytometry, utilizing FITC conjugated Mab MO-1 (CD11b). However, nicotine (1-15 μg/ml) and cadmium sulfate (10 μg/ml), constituents of CSC, individually or in combination had no effect either on CD11b expression or adherence of monocytes to endothelial cells. Treatment of HUVEC with CSC for 60 min also resulted in an increased expression of ICAM-1 and ELAM-1 as determined by mean fluorescence intensity of ICAM-1 and ELAM-1 labeled cells in flow cytometric analysis. The CSC induced expression of CD11b in monocytes was optimal at 25-30 min and was inhibited by protein kinase C inhibitors, staurosporine and H-7, and also by baicalein, a lipoxygenase inhibitor. Similarly, CSC induced ICAM-1 and ELAM-1 expression in HUVEC was inhibited by protein kinase C inhibitors. CSC stimulated the adherence of human monocytes but not the monocytic cell lines HL-60, U937, and THP-1 to endothelial cells. The CSC stimulated adherence of human monocytes was inhibited (80%) by MAb to CD11b and 50% by Mab to ICAM-1 and ELAM-1. These results suggest that cigarettee smoke particulate constituents activate protein kinase C, leading to increased surface expression of adhesive ligand CD11b on peripheral blood monocytes and counter receptor(s) ICAM-1 and ELAM-1 in endothelial cells. The expression of ligand and counter receptor leads to potentiated adherence of monocytes to endothelial cells, an initial event in the pathogenesis of cigarette smoke induced inflammatory response in the vessel wall. © 1994 Wiley-Liss, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1998-07-01
    Print ISSN: 0036-8733
    Electronic ISSN: 1946-7087
    Topics: Biology , Natural Sciences in General , Physics
    Published by Springer Nature
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1984-03-01
    Print ISSN: 0343-8651
    Electronic ISSN: 1432-0991
    Topics: Biology , Medicine
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
  • 6
  • 7
    Publication Date: 2016-12-02
    Description: Introduction: Sickle cell disease (SCD), an inherited blood disorder, is characterized by episodes of painful vaso-occlusive crises (VOC). Peripheral vasoconstriction may contribute to VOC by prolonging the transit time of red blood cells through the microvasculature. We recently demonstrated that heat-induced pain produces stronger vasoconstriction in SCD subjects versus controls, suggesting abnormal autonomic regulation of regional blood flow in SCD. Thus, although pain is generally thought to be a consequence of VOC, it is possible that pain itself may trigger a cascade of events that leads to large-scale VOC by promoting regional peripheral vasoconstriction. Objective: To determine if the underlying functional mechanisms of the vasoconstriction response to heat-induced pain in SCD differ from normal controls. Experimental Protocols: 22 SCD and 23 control (healthy and sickle cell trait) subjects were recruited at Children's Hospital of Los Angeles. Quasi-periodic pulses of pain were delivered on the right forearm using TSA-II neuro analyzer heating thermode. Electrocardiogram, respiration, continuous blood pressure and photoplethysmogram (PPG) were recorded. Both blood pressure and PPG were measured on the ring finger and thumb on the contralateral hand. Reductions in PPG amplitude were taken to represent vasoconstriction. Analysis: A mathematical model was applied to the data to extract the key parameters relating the thermal (pain) pulses, blood pressure and respiration to vasoconstriction. The model enabled the vasoconstriction response to pain to be decomposed into: 1) a neurogenic component, measuring the direct effect of the thermal pain pulse on vasoconstriction; 2) a local vascular component, relating fluctuations in blood pressure, induced by pain, to vasoconstriction; 3) a neurogenic-vascular interaction component, reflecting the modulation of the vascular component by the pain stimulus; and 4) a respiratory coupling component. Results: The model predicted stronger vasoconstriction responses to heat pain in SCD than controls (p = 0.002), consistent with the previous results reported by Khaleel et al. (Blood 126 (23):67, 2015). The pattern of the neurogenic response in both groups was similar but stronger in SCD (Fig 1a). The time-course of the local vascular component was quite pronounced in SCD (Fig 1b) - increases in blood pressure promoted stronger and more rapid vasoconstriction in SCD relative to controls. The neurogenic-vascular interaction (not shown) caused further peripheral vasoconstriction in SCD, but tended to reduce vasoconstriction in controls. The respiratory contribution was small in both groups. Discussion & Conclusions: Heat-induced pain produces peripheral vasoconstriction via direct autonomic nervous system activation, as well as indirectly through the local vascular response to pain-triggered blood pressure fluctuations. The complex dynamics of the vasoconstriction response can only be understood by application of a mathematical model incorporating several relevant simultaneously measured and frequently sampled physiological signals. The stronger neurogenic response in SCD suggests elevated sympathetic activity compared to controls. The local vascular component in the SCD subjects exhibits a higher reactivity to increases in local blood pressure that promotes vasoconstriction, consistent with underlying endothelial dysfunction. The contribution of neurogenic-vascular interaction derived from the model likely represents the degree to which sympathetic overactivity leads to vascular dysfunction in SCD. These results suggest that dysautonomia and its interaction with peripheral vascular dysregulation participate in the genesis of vaso-occlusive crisis. Figure 1 (a) average neurogenic response (% change from baseline) to a heat pain pulse (20 °C, 10-sec long) in SCD (N = 22) and controls (N = 23); (b) average vascular response (% change from baseline) to a blood pressure pulse induced by pain (10 mmHg, 10-sec long) in SCD and controls. Figure 1. (a) average neurogenic response (% change from baseline) to a heat pain pulse (20 °C, 10-sec long) in SCD (N = 22) and controls (N = 23); (b) average vascular response (% change from baseline) to a blood pressure pulse induced by pain (10 mmHg, 10-sec long) in SCD and controls. Disclosures Wood: Biomed Informatics: Consultancy; AMAG: Consultancy; Vifor: Consultancy; Ionis Pharmaceuticals: Consultancy; Vifor: Consultancy; World Care Clinical: Consultancy; Celgene: Consultancy; Biomed Informatics: Consultancy; AMAG: Consultancy; Apopharma: Consultancy; Apopharma: Consultancy; World Care Clinical: Consultancy; Celgene: Consultancy; Ionis Pharmaceuticals: Consultancy.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-11-13
    Description: β-thalassemia is characterized by ineffective erythropoiesis and iron overload. Ineffective erythropoiesis causes iron overload by suppressing hepcidin, the main negative regulator of iron absorption and recycling, and is mediated by secretion of erythroferrone from bone marrow cells. Targeted treatment for ineffective erythropoiesis is unavailable. Furthermore, molecular mechanisms involved in ineffective erythropoiesis and the details of how erythropoiesis regulates iron metabolism are incompletely understood. Lastly, while loss of erythroferrone in β-thalassemic mice leads to partial reversal of iron overload [Kautz Blood 2015], erythroferrone ablated mice are still able to suppress hepcidin after phlebotomy [Kautz Nat Med 2014]. These finding provide evidence of additional regulatory crosstalk between erythropoiesis and iron metabolism. We hypothesize that bone-marrow derived exosomes regulate iron metabolism by modulating hepcidin. Exosomes are small extracellular vesicles derived from multi-vesicular bodies forming intraluminal vesicles which fuse with the plasma membrane and are released by many different cell types [Thery Nat Rev Immun 2002]. In light of their capacity for cell-cell communication and modification of the microenvironment, exosomes have been widely studied in multiple diseases [Valadi Nat Cell Bio 2007] despite which, erythropoiesis-derived exosomes and their role in iron metabolism regulation remain unexplored. Our preliminary data demonstrate that phlebotomy in wild type mice results in increased exosome concentration in serum and that exosomes are increased in th3/+ mouse serum (Figure 1a). Furthermore, hepcidin induction by exosome depleted-FBS is decreased relative to FBS (Figure 1b), and exosomes isolated from FBS induce hepcidin in a dose response manner in vitro (Figure 1c). We thus propose to explore the mechanistic relationship between exosomes and hepcidin regulation in β-thalassemia. Serum samples from patients with β-thalassemia major and age / gender matched controls were collected; all patients were treated with iron chelation therapy and all samples were collected immediately prior to transfusion. Exosome fractions were purified and analyzed in patients relative to controls. Although there is no difference in the number of exosomes or mean particle size within the exosomal fraction, exosomal protein content per volume of serum is significantly decreased in patients relative to controls. In addition, the treatment of primary wild type mouse hepatocytes with sera from patients and controls reveals the expected relatively decreased hepcidin induction in β-thalassemic patient sera treated hepatocytes relative to control sera; a similar difference is seen in hepatocytes treated with exosome-depleted sera from patients and controls (Figure 2a). These findings suggest that hepcidin suppression is a consequence of the exosome-free portion of serum from control and β-thalassemic samples. Furthermore, only exosomes derived from β-thalassemic patient sera induces hepcidin expression in primary wild type mouse hepatocyte cultures (Figure 2b). Lastly, exosomes derived from β-thalassemic patient sera do not affect ERK1/2 and STAT3 signaling in primary hepatocytes but increase SMAD1/5/8 (Figure 2c) and decrease AKT signaling (Figure 2d). Taken together, these findings demonstrate that exosomes enhance hepcidin expression via increased SMAD1/5/8 signaling, that increased hepcidin may influence multiple signaling pathways by an autocrine mechanism in response to exosomes, and that exosomes counterbalance hepcidin suppressive substances in the exosome-depleted serum from β-thalassemic samples. Our studies provide novel insights into the important previously unexplored mechanism of hepcidin regulation by exosomes in both physiologic and pathologic states. Disclosures Coates: apo pharma: Consultancy, Honoraria, Speakers Bureau; vifor: Consultancy, Honoraria; celgene: Consultancy, Honoraria, Other: steering committee of clinical study; agios pharma: Consultancy, Honoraria. Ginzburg:La Jolla Pharma: Membership on an entity's Board of Directors or advisory committees.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2009-11-20
    Description: Abstract 1523 Poster Board I-546 Sickle cell anemia (SCA) is a genetic disorder characterized by recurring episodes of vaso-occlusive crisis (VOC) that can lead to hospitalization or sudden death. Hypoxia is an accepted trigger of sickling and degrees of nighttime hypoxia correlate with strokes and frequency of VOC. To better understand the mechanism of events leading to VOC, we simulated the occurrence of nocturnal hypoxia in SCA patients by administration of five breaths of 100% nitrogen. Tidal volume (Vt), arterial oxygen saturation, electrocardiogram (ECG), and microvascular perfusion (PU) by Laser-Doppler were continuously recorded. We had anticipated a drop in PU after each controlled episode of hypoxia. However, we observed multiple prominent drops in PU in SCA subjects (n=8) that were not as clearly evident in controls (CTL; n=9), and found no direct relationship between hypoxia and change in PU (p = NS). As deep breaths or sighs can trigger reflex peripheral vasoconstriction, we examined Vt respiratory tracings obtained simultaneously and observed that PU drops frequently followed sighs (see Figure) in SCA subjects, but rarely in CTL. A statistical algorithm was used to find all sighs and vasoconstrictive events (PU drops) during each 40-minute experimental session. PU drops were associated with sighs in 7 of 8 SCA patients and in 4 of 9 CTL subjects (P 〈 0.001, Poisson regression analysis). Five CTL and 1 SCA subjects had infrequent sighs and no association between sighs and PU drops. The likelihood ratio of sigh-associated PU drops was significantly higher in SCA than CTL subjects (median = 59.9 % vs. 〈 1 % for SCA vs. CTL, P = 0.008, rank-sum test) whereas the frequency of sighs was not significantly different between the two groups (median = 2.2 % vs. 1.3 % for SCA vs. CTL, P = 0.16, rank-sum test), indicating that SCA patients are much more likely to have sigh-associated peripheral vasoconstriction. Since the sigh-vasoconstrictor response is controlled by the autonomic nervous system (ANS), we measured heart rate variability (HRV) which is an accepted index of sympathetic/parasympathetic balance. These studies showed substantial reduction of parasympathetic modulation of HRV during hypoxia in SCA but not in CTL subjects (p 〈 0.01), indicating a marked abnormality of the ANS in SCA. In overview, the likelihood of coupling between spontaneous sighs and subsequent vasoconstrictive events (PU drops) is much higher in SCA patients than in CTL. Thus, we speculate that a drop in perfusion secondary to increased neural coupling between the lung and vasculature may be an initiating event in VOC. Hypoxia may secondarily promote VOC by altering ANS sensitivity and increasing the probability that a sigh will in turn lead to reflex peripheral vasoconstriction. In a background of HbS, transient decreases in perfusion may prolong red cell residence time in the microvasculature, leading to HbS polymerization, sickling and vascular occlusion. Disclosures No relevant conflicts of interest to declare.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2003-08-15
    Description: Sickle cell disease (SCD) results in chronic hypoxia and secondarily increased erythropoietin concentrations. Leukocytosis and activated monocytes are also observed in SCD in absence of infection or vaso-occlusion (steady state), the reasons for which are unknown. We found that erythroid cells produced placenta growth factor (PlGF), an angiogenic growth factor belonging to the vascular endothelial growth factor (VEGF) family, and its expression was induced in bone marrow CD34+ progenitor cells in the presence of erythropoietin. Furthermore, the steady state circulating PlGF levels in subjects with severe SCD (at least 3 vaso-occlusive crises [VOCs] per year) were 18.5 ± 1.2 pg/mL (n = 9) compared with 15.5 ± 1.2 pg/mL (n = 13) in those with mild SCD (fewer than 3 VOCs per year) and 11.3 ± 0.7 pg/mL (n = 9) in healthy controls (P 〈 .05), suggesting a correlation between PlGF levels and SCD severity. In addition, PlGF significantly increased mRNA levels of the proinflammatory cytochemokines interleukin-1β, interleukin-8, monocyte chemoattractant protein-1, and VEGF in peripheral blood mononuclear cells (MNCs) of healthy subjects (n = 4; P 〈 .05). Expression of these same cytochemokines was significantly increased in MNCs from subjects with SCD at steady state (n = 14), compared with healthy controls. Of the leukocyte subfractions, PlGF stimulated monocyte chemotaxis (P 〈 .05, n = 3). Taken together, these data show for the first time that erythroid cells intrinsically release a factor that can directly activate monocytes to increase inflammation. The baseline inflammation seen in SCD has always been attributed to sequelae secondary to the sickling phenomenon. We show that PlGF contributes to the inflammation observed in SCD and increases the incidence of vaso-occlusive events.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...