ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Publikationsdatum: 2017-01-01
    Beschreibung: The relative contribution of the synoptic-scale circulations to local and mesoscale processes was quantified in terms of the variability of midlatitude temperature anomalies from 2003 to 2013 using meteorological variables collected from three French observatories and reanalyses. Four weather regimes were defined from sea level pressure anomalies using National Centers for Environmental Prediction reanalyses with a K-means algorithm. No correlation was found between daily temperature anomalies and weather regimes, and the variability of temperature anomalies within each regime was large. It was therefore not possible to evaluate the effect of large scales on temperature anomalies by this method. An alternative approach was found with the use of the analogs method: the principle being that for each day of the considered time series, a set of days that had a similar large-scale 500-hPa geopotential height field within a fixed domain was considered. The observed temperature anomalies were then compared with those observed during the analog days: the closer the two types of series are to each other, the greater is the influence of the large scale. This method highlights a widely predominant influence of the large-scale atmospheric circulation on the temperature anomalies. It showed a potentially larger influence of the Mediterranean Sea and orographic flow on the two southern observatories. Low-level cloud radiative effects substantially modulated the variability of the daily temperature anomalies.
    Print ISSN: 1558-8424
    Digitale ISSN: 1558-8432
    Thema: Geographie , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2018-07-06
    Beschreibung: We document, for the first time, how detailed vertical profiles of cloud fraction (CF) change diurnally between 51∘ S and 51∘ N, by taking advantage of 15 months of measurements from the Cloud-Aerosol Transport System (CATS) lidar on the non-sun-synchronous International Space Station (ISS). Over the tropical ocean in summer, we find few high clouds during daytime. At night they become frequent over a large altitude range (11–16 km between 22:00 and 04:00 LT). Over the summer tropical continents, but not over ocean, CATS observations reveal mid-level clouds (4–8 km above sea level or a.s.l.) persisting all day long, with a weak diurnal cycle (minimum at noon). Over the Southern Ocean, diurnal cycles appear for the omnipresent low-level clouds (minimum between noon and 15:00) and high-altitude clouds (minimum between 08:00 and 14:00). Both cycles are time shifted, with high-altitude clouds following the changes in low-altitude clouds by several hours. Over all continents at all latitudes during summer, the low-level clouds develop upwards and reach a maximum occurrence at about 2.5 km a.s.l. in the early afternoon (around 14:00). Our work also shows that (1) the diurnal cycles of vertical profiles derived from CATS are consistent with those from ground-based active sensors on a local scale, (2) the cloud profiles derived from CATS measurements at local times of 01:30 and 13:30 are consistent with those observed from CALIPSO at similar times, and (3) the diurnal cycles of low and high cloud amounts (CAs) derived from CATS are in general in phase with those derived from geostationary imagery but less pronounced. Finally, the diurnal variability of cloud profiles revealed by CATS strongly suggests that CALIPSO measurements at 01:30 and 13:30 document the daily extremes of the cloud fraction profiles over ocean and are more representative of daily averages over land, except at altitudes above 10 km where they capture part of the diurnal variability. These findings are applicable to other instruments with local overpass times similar to CALIPSO's, such as all the other A-Train instruments and the future EarthCARE mission.
    Print ISSN: 1680-7316
    Digitale ISSN: 1680-7324
    Thema: Geologie und Paläontologie
    Publiziert von Copernicus im Namen von European Geosciences Union.
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2019-02-04
    Beschreibung: This work uses a network of GPS stations over Europe from which a homogenized integrated water vapor (IWV) dataset has been retrieved, completed with colocated temperature and precipitation measurements over specific stations to (i) estimate the biases of six regional climate models over Europe in terms of humidity; (ii) understand their origins; and (iii) finally assess the impact of these biases on the frequency of occurrence of precipitation. The evaluated simulations have been performed in the framework of HYMEX/Med-CORDEX programs and cover the Mediterranean area and part of Europe at horizontal resolutions of 50 to 12 km. The analysis shows that models tend to overestimate the low values of IWV and the use of the nudging technique reduces the differences between GPS and simulated IWV. Results suggest that physics of models mostly explain the mean biases, while dynamics affects the variability. The land surface–atmosphere exchanges affect the estimation of IWV over most part of Europe, especially in summer. The limitations of the models to represent these processes explain part of their biases in IWV. However, models correctly simulate the dependance between IWV and temperature, and specifically the deviation that this relationship experiences regarding the Clausius–Clapeyron law after a critical value of temperature (Tbreak). The high spatial variability of Tbreak indicates that it has a strong dependence on local processes which drive the local humidity sources. This explains why the maximum values of IWV are not necessarily observed over warmer areas, which are often dry areas. Finally, it is shown over the SIRTA observatory (near Paris) that the frequency of occurrence of light precipitation is strongly conditioned by the biases in IWV and by the precision of the models to reproduce the distribution of IWV as a function of the temperature. The results of the models indicate that a similar dependence occurs in other areas of Europe, especially where precipitation has a predominantly convective character. According to the observations, for each range of temperature, there is a critical value of IWV from which precipitation starts to increase. The critical values and the probability of exceeding them are simulated with a bias that depends on the model. Those models, which generally present light precipitation too often, show lower critical values and higher probability of exceeding them.
    Print ISSN: 1680-7316
    Digitale ISSN: 1680-7324
    Thema: Geologie und Paläontologie
    Publiziert von Copernicus im Namen von European Geosciences Union.
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
  • 5
    Publikationsdatum: 2019-10-21
    Beschreibung: In the context of a network of sky cameras installed on atmospheric multi-instrumented sites, we present an algorithm named ELIFAN, which aims to estimate the cloud cover amount from full-sky visible daytime images with a common principle and procedure. ELIFAN was initially developed for a self-made full-sky image system presented in this article and adapted to a set of other systems in the network. It is based on red-to-blue ratio thresholding for the distinction of cloudy and cloud-free pixels of the image and on the use of a cloud-free sky library, without taking account of aerosol loading. Both an absolute (without the use of a cloud-free reference image) and a differential (based on a cloud-free reference image) red-to-blue ratio thresholding are used. An evaluation of the algorithm based on a 1-year-long series of images shows that the proposed algorithm is very convincing for most of the images, with about 97 % of relevance in the process, outside the sunrise and sunset transitions. During those latter periods, however, ELIFAN has large difficulties in appropriately processing the image due to a large difference in color composition and potential confusion between cloud-free and cloudy sky at that time. This issue also impacts the library of cloud-free images. Beside this, the library also reveals some limitations during daytime, with the possible presence of very small and/or thin clouds. However, the latter have only a small impact on the cloud cover estimate. The two thresholding methodologies, the absolute and the differential red-to-blue ratio thresholding processes, agree very well, with departure usually below 8 % except in sunrise–sunset periods and in some specific conditions. The use of the cloud-free image library gives generally better results than the absolute process. It particularly better detects thin cirrus clouds. But the absolute thresholding process turns out to be better sometimes, for example in some cases in which the sun is hidden by a cloud.
    Print ISSN: 1867-1381
    Digitale ISSN: 1867-8548
    Thema: Geologie und Paläontologie
    Publiziert von Copernicus im Namen von European Geosciences Union.
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Publikationsdatum: 2019-04-10
    Beschreibung: For several years, global warming has been unequivocal, leading to climate change at global, regional and local scales. A good understanding of climate characteristics and local variability is important for adaptation and response. Indeed, the contribution of local processes and their understanding in the context of warming are still very little studied and poorly represented in climate models. Improving the knowledge of surface-atmosphere feedback effects at local scales is therefore important for future projections. Using observed data in the Paris region from 1979 to 2017, this study characterizes the changes observed over the last 40 years for six climatic parameters (e.g., mean, maximum and minimum air temperature at 2 metres, 2 metres relative and specific humidities and precipitation) at the annual and seasonal scales and in summer, regardless of large-scale circulation, with an attribution of which part of the change is linked to large scale circulation or thermordynamic. The results show that some trends differ from the ones observed at the regional or global scale. Indeed, in the Paris region, the maximum temperature increases faster than does the minimum temperature. The most significant trends are observed in spring and in summer, with a strong increase in temperature and a very strong decrease in relative humidity, while specific humidity and precipitation show no significant trends. The summer trends can be explained more precisely using large-scale circulation, especially regarding the evolution of the precipitation and specific humidity. The analysis indicates the important role of surface-atmosphere feedback in local variability and that this feedback is amplified or inhibited in a context of global warming, especially in an urban environment.
    Digitale ISSN: 1680-7375
    Thema: Geologie und Paläontologie
    Publiziert von Copernicus im Namen von European Geosciences Union.
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    Publikationsdatum: 2018-07-10
    Beschreibung: This work uses a network of GPS stations over Europe from which a homogenised integrated water vapor (IWV) dataset has been retrieved, completed with colocated temperature and precipitation measurements over specific stations to i) estimate the biases of six regional climate models over Europe in terms of humidity; ii) understand their origins; iii) and finally assess the impact of these biases on the frequency of occurrence of precipitation. The evaluated simulations have been performed in the framework of HYMEX/Med-CORDEX programs and cover the Mediterranean area and part of Europe at horizontal resolutions of 50 to 12km. The analysis shows that models tend to overestimate the low values of IWV and the use of the nudging technique reduces the differences between GPS and simulated IWV. Results suggest that physics of models mostly explain the mean biases, while dynamics affects the variability. The land surface/atmosphere exchanges affect the estimation of IWV over most part of Europe, especially in summer. The limitations of the models to represent these processes explain part of their baises in IWV. However, models correctly simulate the dependance between IWV and temperature, and specifically the deviation that this relationship experiences regarding the Clausius-Clapeyron law after a critical value of temperature (Tbreak). The high spatial variability of Tbreak indicates that it has a strong dependence on local processes which drive the local humidity sources. This explains why the maximum values of IWV are not necessarely observed over warmer area, that are often dry area. Finally, it is shown over SIRTA observatory (near Paris) that the frequency of occurrence of light precipitation is strongly conditioned by the biases in IWV and by the precision of the models to reproduce the distribution of IWV as a function of the temperature. The results of the models indicate that a similar dependence occurs in other areas of Europe, especially where precipitation has a predominantly convective character. According to the observations, for each range of temperature, there is a critical value of IWV from which precipitation picks up. The critical values and the probability to exceed them are simulated with a bias that depends on the model. Those models which present too often light precipitation generally show lower critical values and higher probability to exceed them.
    Digitale ISSN: 1680-7375
    Thema: Geologie und Paläontologie
    Publiziert von Copernicus im Namen von European Geosciences Union.
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    Publikationsdatum: 2018-03-26
    Beschreibung: We take advantage of 15 months of measurements from the Cloud and Aerosol Transport System (CATS) lidar on the non-sun-synchronous International Space Station (ISS) to document, for the first time, the diurnal cycle of detailed vertical profiles of Cloud Fraction between 51° S and 51° N. After processing CATS lidar data, we analyzed the diurnal cycles of the cloud profiles over ocean and over continent in two different seasons. Over the Tropical ocean in summer, the high clouds geometric thickness increases significantly from 1 km near 5 PM to 5 km near 10 PM, resulting in a high clouds maximum at nighttime. Over the summer tropical continents, CATS observations reveal the presence of a mid-level cloud layer (4–8 km ASL) persisting all-day long, with a weak diurnal cycle (minimum at noon). Over the Southern Ocean, diurnal cycles appear for the omnipresent low-level clouds (minimum between noon and 3 PM) and for the high-altitude clouds (minimum between 8 AM and 2 PM). Both cycles are time-shifted, with high-altitude clouds following the changes in low-altitude clouds by several hours. Over all continents at all latitudes during summer, the low-level clouds develop vertically and reach a maximum occurrence at about 2.5 km ASL in the early afternoon (around 2 pm). Our work also show that 1) the diurnal cycles of vertical profiles derived from CATS are consistent with those from ground-based active sensors at local scale, 2) the cloud profiles derived from CATS measurements at local times of 0130 AM and 0130 PM are consistent with those observed from CALIPSO at similar times, 3) the diurnal cycles of low and high cloud amounts derived from CATS are in general in phase with those derived from geostationary imagery but less pronounced. Finally, the diurnal variability of cloud profiles revealed by CATS strongly suggests that CALIPSO measurements at 0130 AM and PM document the daily extremes of the cloud fraction profiles over ocean and are more representative of daily averages over land, except at altitudes above 10 km where they capture part of the diurnal variability. These findings are equally applicable to other instruments with local overpass times similar to CALIPSO's, like all the other A-Train instruments and the future Earth-CARE mission.
    Digitale ISSN: 1680-7375
    Thema: Geologie und Paläontologie
    Publiziert von Copernicus im Namen von European Geosciences Union.
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    Publikationsdatum: 2019-10-24
    Beschreibung: For several years, global warming has been unequivocal, leading to climate change at global, regional and local scales. A good understanding of climate characteristics and local variability is important for adaptation and response. Indeed, the contribution of local processes and their understanding in the context of warming are still very little studied and poorly represented in climate models. Improving the knowledge of surface–atmosphere feedback effects at local scales is therefore important for future projections. Using observed data in the Paris region from 1979 to 2017, this study characterizes the changes observed over the last 40 years for six climatic parameters (e.g. mean, maximum and minimum air temperature at 2 m, 2 m relative and specific humidities and precipitation) at the annual and seasonal scales and in summer, regardless of large-scale circulation, with an attribution of which part of the change is linked to large-scale circulation or thermodynamic. The results show that some trends differ from the ones observed at the regional or global scale. Indeed, in the Paris region, the maximum temperature increases faster than does the minimum temperature. The most significant trends are observed in spring and in summer, with a strong increase in temperature and a very strong decrease in relative humidity, while specific humidity and precipitation show no significant trends. The summer trends can be explained more precisely using large-scale circulation, especially regarding the evolution of the precipitation and specific humidity. The analysis indicates the important role of surface–atmosphere feedback in local variability and that this feedback is amplified or inhibited in a context of global warming, especially in an urban environment.
    Print ISSN: 1680-7316
    Digitale ISSN: 1680-7324
    Thema: Geologie und Paläontologie
    Publiziert von Copernicus im Namen von European Geosciences Union.
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    Publikationsdatum: 2014-08-04
    Print ISSN: 0094-8276
    Digitale ISSN: 1944-8007
    Thema: Geologie und Paläontologie , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...