ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2014-11-05
    Description: Upon infection and inflammation, tissue repair and regeneration are essential in reestablishing function. Here we identified potent molecules present in self-limited infectious murine exudates, regenerating planaria, and human milk as well as macrophages that stimulate tissue regeneration in planaria and are proresolving. Characterization of their physical properties and isotope tracking...
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2009-10-30
    Description: A growing body of evidence indicates that resolution of acute inflammation is an active process. Resolvins are a new family of lipid mediators enzymatically generated within resolution networks that possess unique and specific functions to orchestrate catabasis, the phase in which disease declines. Resolvin D2 (RvD2) was originally identified in resolving exudates, yet its individual contribution in resolution remained to be elucidated. Here, we establish RvD2's potent stereoselective actions in reducing excessive neutrophil trafficking to inflammatory loci. RvD2 decreased leukocyte-endothelial interactions in vivo by endothelial-dependent nitric oxide production, and by direct modulation of leukocyte adhesion receptor expression. In mice with microbial sepsis initiated by caecal ligation and puncture, RvD2 sharply decreased both local and systemic bacterial burden, excessive cytokine production and neutrophil recruitment, while increasing peritoneal mononuclear cells and macrophage phagocytosis. These multi-level pro-resolving actions of RvD2 translate to increased survival from sepsis induced by caecal ligation and puncture and surgery. Together, these results identify RvD2 as a potent endogenous regulator of excessive inflammatory responses that acts via multiple cellular targets to stimulate resolution and preserve immune vigilance.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2779525/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2779525/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Spite, Matthew -- Norling, Lucy V -- Summers, Lisa -- Yang, Rong -- Cooper, Dianne -- Petasis, Nicos A -- Flower, Roderick J -- Perretti, Mauro -- Serhan, Charles N -- 085903/Z/08/Wellcome Trust/United Kingdom -- 086867/Z/08/Z/Wellcome Trust/United Kingdom -- 18103/Arthritis Research UK/United Kingdom -- 18445/Arthritis Research UK/United Kingdom -- F32 HL087526/HL/NHLBI NIH HHS/ -- F32 HL087526-02/HL/NHLBI NIH HHS/ -- GM-38765/GM/NIGMS NIH HHS/ -- HL087526/HL/NHLBI NIH HHS/ -- P50 DE016191/DE/NIDCR NIH HHS/ -- P50 DE016191-05/DE/NIDCR NIH HHS/ -- P50-DE016191/DE/NIDCR NIH HHS/ -- R37 GM038765/GM/NIGMS NIH HHS/ -- R37 GM038765-23/GM/NIGMS NIH HHS/ -- England -- Nature. 2009 Oct 29;461(7268):1287-91. doi: 10.1038/nature08541.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19865173" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Docosahexaenoic Acids/chemical synthesis/chemistry/*metabolism ; Endothelial Cells/metabolism ; Escherichia coli/growth & development/isolation & purification ; Humans ; Inflammation/immunology/metabolism/microbiology ; Leukocytes/*immunology/*metabolism ; Macrophages/immunology/microbiology ; Male ; Mice ; Mice, Inbred C57BL ; Nitric Oxide/metabolism ; Peritoneal Cavity/cytology/microbiology ; Peritonitis/immunology/metabolism/microbiology ; Phagocytosis ; Reactive Oxygen Species/metabolism ; Sepsis/*immunology/metabolism/*microbiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2005-04-30
    Description: Mammalian Toll-like receptors (TLRs) play an important role in the innate recognition of pathogens by dendritic cells (DCs). Although TLRs are clearly involved in the detection of bacteria and viruses, relatively little is known about their function in the innate response to eukaryotic microorganisms. Here we identify a profilin-like molecule from the protozoan parasite Toxoplasma gondii that generates a potent interleukin-12 (IL-12) response in murine DCs that is dependent on myeloid differentiation factor 88. T. gondii profilin activates DCs through TLR11 and is the first chemically defined ligand for this TLR. Moreover, TLR11 is required in vivo for parasite-induced IL-12 production and optimal resistance to infection, thereby establishing a role for the receptor in host recognition of protozoan pathogens.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yarovinsky, Felix -- Zhang, Dekai -- Andersen, John F -- Bannenberg, Gerard L -- Serhan, Charles N -- Hayden, Matthew S -- Hieny, Sara -- Sutterwala, Fayyaz S -- Flavell, Richard A -- Ghosh, Sankar -- Sher, Alan -- 1R01AI045806-01A1/AI/NIAID NIH HHS/ -- AI05093/AI/NIAID NIH HHS/ -- R01-AI59440/AI/NIAID NIH HHS/ -- R01-GM38765/GM/NIGMS NIH HHS/ -- Intramural NIH HHS/ -- Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2005 Jun 10;308(5728):1626-9. Epub 2005 Apr 28.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Immunobiology Section, Laboratory of Parasitic Diseases; National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA. fyarovinsky@niaid.nih.gov〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15860593" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Signal Transducing ; Amino Acid Motifs ; Amino Acid Sequence ; Animals ; Antigens, Differentiation/genetics/metabolism ; Contractile Proteins/chemistry/*immunology/isolation & purification/metabolism ; Dendritic Cells/*immunology ; Genes, Protozoan ; Immunity, Innate ; Interleukin-12/biosynthesis/blood ; Ligands ; Membrane Glycoproteins/metabolism ; Mice ; Mice, Inbred C57BL ; Microfilament Proteins/chemistry/*immunology/isolation & purification/metabolism ; Molecular Sequence Data ; Myeloid Differentiation Factor 88 ; NF-kappa B/metabolism ; Profilins ; Protozoan Proteins/chemistry/*immunology/isolation & purification/metabolism ; Receptors, Cell Surface/*metabolism ; Receptors, Immunologic/genetics/metabolism ; Recombinant Proteins/immunology ; Signal Transduction ; Toll-Like Receptors ; Toxoplasma/genetics/*immunology ; Toxoplasmosis, Animal/*immunology ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2014-06-06
    Description: Advances in our understanding of the mechanisms that bring about the resolution of acute inflammation have uncovered a new genus of pro-resolving lipid mediators that include the lipoxin, resolvin, protectin and maresin families, collectively called specialized pro-resolving mediators. Synthetic versions of these mediators have potent bioactions when administered in vivo. In animal experiments, the mediators evoke anti-inflammatory and novel pro-resolving mechanisms, and enhance microbial clearance. Although they have been identified in inflammation resolution, specialized pro-resolving mediators are conserved structures that also function in host defence, pain, organ protection and tissue remodelling. This Review covers the mechanisms of specialized pro-resolving mediators and omega-3 essential fatty acid pathways that could help us to understand their physiological functions.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4263681/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4263681/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Serhan, Charles N -- P01 GM095467/GM/NIGMS NIH HHS/ -- P01GM095467/GM/NIGMS NIH HHS/ -- R01 GM038765/GM/NIGMS NIH HHS/ -- R01GM038765/GM/NIGMS NIH HHS/ -- England -- Nature. 2014 Jun 5;510(7503):92-101. doi: 10.1038/nature13479.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Harvard Institutes of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24899309" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Chronic Disease ; Docosahexaenoic Acids/metabolism ; Fatty Acids, Omega-3/*metabolism ; Fatty Acids, Unsaturated/metabolism ; Humans ; Immunity ; Infection/metabolism ; Inflammation/drug therapy/*metabolism/pathology ; Inflammation Mediators/*metabolism/therapeutic use ; Models, Biological ; Pain/metabolism ; Regeneration ; Translational Medical Research ; Wound Healing
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2012-04-28
    Description: Underlying mechanisms for how bacterial infections contribute to active resolution of acute inflammation are unknown. Here, we performed exudate leukocyte trafficking and mediator-metabololipidomics of murine peritoneal Escherichia coli infections with temporal identification of pro-inflammatory (prostaglandins and leukotrienes) and specialized pro-resolving mediators (SPMs). In self-resolving E. coli exudates (10(5) colony forming units, c.f.u.), the dominant SPMs identified were resolvin (Rv) D5 and protectin D1 (PD1), which at 12 h were at significantly greater levels than in exudates from higher titre E. coli (10(7) c.f.u.)-challenged mice. Germ-free mice had endogenous RvD1 and PD1 levels higher than in conventional mice. RvD1 and RvD5 (nanograms per mouse) each reduced bacterial titres in blood and exudates, E. coli-induced hypothermia and increased survival, demonstrating the first actions of RvD5. With human polymorphonuclear neutrophils and macrophages, RvD1, RvD5 and PD1 each directly enhanced phagocytosis of E. coli, and RvD5 counter-regulated a panel of pro-inflammatory genes, including NF-kappaB and TNF-alpha. RvD5 activated the RvD1 receptor, GPR32, to enhance phagocytosis. With self-limited E. coli infections, RvD1 and the antibiotic ciprofloxacin accelerated resolution, each shortening resolution intervals (R(i)). Host-directed RvD1 actions enhanced ciprofloxacin's therapeutic actions. In 10(7) c.f.u. E. coli infections, SPMs (RvD1, RvD5, PD1) together with ciprofloxacin also heightened host antimicrobial responses. In skin infections, SPMs enhanced vancomycin clearance of Staphylococcus aureus. These results demonstrate that specific SPMs are temporally and differentially regulated during infections and that they are anti-phlogistic, enhance containment and lower antibiotic requirements for bacterial clearance.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3340015/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3340015/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chiang, Nan -- Fredman, Gabrielle -- Backhed, Fredrik -- Oh, Sungwhan F -- Vickery, Thad -- Schmidt, Birgitta A -- Serhan, Charles N -- P01 GM095467/GM/NIGMS NIH HHS/ -- P01 GM095467-01/GM/NIGMS NIH HHS/ -- P01 GM095467-02/GM/NIGMS NIH HHS/ -- P01GM095467/GM/NIGMS NIH HHS/ -- R01 GM038765/GM/NIGMS NIH HHS/ -- R01 GM038765-24/GM/NIGMS NIH HHS/ -- R01 GM038765-25/GM/NIGMS NIH HHS/ -- R01 GM038765-26/GM/NIGMS NIH HHS/ -- R01GM38765/GM/NIGMS NIH HHS/ -- England -- Nature. 2012 Apr 25;484(7395):524-8. doi: 10.1038/nature11042.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22538616" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Anti-Bacterial Agents/*pharmacology/therapeutic use ; Docosahexaenoic Acids/*metabolism ; Escherichia coli/*drug effects/immunology ; Escherichia coli Infections/drug therapy/*metabolism/microbiology ; Humans ; Hypothermia/prevention & control ; Macrophages/immunology ; Male ; Mice ; Mice, Inbred C57BL ; Microbial Viability/drug effects ; Neutrophils/immunology ; Peritonitis/drug therapy/metabolism/microbiology ; Phagocytosis ; Skin Diseases/drug therapy/metabolism/microbiology ; Staphylococcal Infections/drug therapy/*metabolism/microbiology ; Staphylococcus aureus/drug effects/immunology ; Vancomycin/pharmacology/therapeutic use
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2016-10-26
    Description: Macrophages are central in coordinating immune responses, tissue repair, and regeneration, with different subtypes being associated with inflammation-initiating and proresolving actions. We recently identified a family of macrophage-derived proresolving and tissue regenerative molecules coined maresin conjugates in tissue regeneration (MCTR). Herein, using lipid mediator profiling we identified MCTR in human...
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 1987-09-04
    Description: Arachidonic acid is released from membrane phospholipids upon cell stimulation (for example, by immune complexes and calcium ionophores) and converted to leukotrienes by a 5-lipoxygenase that also has leukotriene A4 synthetase activity. Leukotriene A4, an unstable epoxide, is hydrolyzed to leukotriene B4 or conjugated with glutathione to yield leukotriene C4 and its metabolites, leukotriene D4 and leukotriene E4. The leukotrienes participate in host defense reactions and pathophysiological conditions such as immediate hypersensitivity and inflammation. Recent studies also suggest a neuroendocrine role for leukotriene C4 in luteinizing hormone secretion. Lipoxins are formed by the action of 5- and 15-lipoxygenases on arachidonic acid. Lipoxin A causes contraction of guinea pig lung strips and dilation of the microvasculature. Both lipoxin A and B inhibit natural killer cell cytotoxicity. Thus, the multiple interaction of lipoxygenases generates compounds that can regulate specific cellular responses of importance in inflammation and immunity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Samuelsson, B -- Dahlen, S E -- Lindgren, J A -- Rouzer, C A -- Serhan, C N -- New York, N.Y. -- Science. 1987 Sep 4;237(4819):1171-6.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2820055" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Arachidonate 5-Lipoxygenase/metabolism ; *Arachidonic Acids/biosynthesis/physiology ; Central Nervous System/physiology ; Humans ; *Hydroxyeicosatetraenoic Acids/biosynthesis/physiology ; Leukotriene A4 ; *Leukotriene B4/biosynthesis/physiology ; *Lipoxins ; *SRS-A/biosynthesis/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1520-6904
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    The @journal of organic chemistry 54 (1989), S. 5527-5535 
    ISSN: 1520-6904
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2014-10-16
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...