ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2015-04-30
    Description: Much evidence points towards that the photosphere in the relativistic outflow in GRBs plays an important role in shaping the observed MeV spectrum. However, it is unclear whether the spectrum is fully produced by the photosphere or whether a substantial part of the spectrum is added by processes far above the photosphere. Here we make a detailed study of the -ray emission from single pulse GRB110920A which has a spectrum that becomes extremely narrow towards the end of the burst. We show that the emission can be interpreted as Comptonization of thermal photons by cold electrons in an unmagnetized outflow at an optical depth of  ~ 20. The electrons receive their energy by a local dissipation occurring close to the saturation radius. The main spectral component of GRB110920A and its evolution is thus, in this interpretation, fully explained by the emission from the photosphere including localized dissipation at high optical depths.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-01-01
    Description: It has been suggested that the prompt emission in gamma-ray bursts consists of several components giving rise to the observed spectral shape. Here we examine a sample of the eight brightest, single pulsed Fermi bursts whose spectra are modelled by using synchrotron emission as one of the components. Five of these bursts require an additional photospheric component (blackbody). In particular, we investigate the inferred properties of the jet and the physical requirements set by the observed components for these five bursts, in the context of a baryonic dominated outflow, motivated by the strong photospheric component. We find similar jet properties for all five bursts: the bulk Lorentz factor decreases monotonously over the pulses and lies between 1000 and 100. This evolution is robust and can neither be explained by a varying radiative efficiency nor a varying magnetization of the jet (assuming the photosphere radius is above the coasting radius). Such a behaviour challenges several dissipation mechanisms, e.g. the internal shocks. Furthermore, in all eight cases the data clearly reject a fast-cooled synchrotron spectrum (in which a significant fraction of the emitting electrons have cooled to energies below the minimum injection energy), inferring a typical electron Lorentz factor of 10 4 –10 7 . Such values are much higher than what is typically expected in internal shocks. Therefore, while the synchrotron scenario is not rejected by the data, the interpretation does present several limitations that need to be addressed. Finally, we point out and discuss alternative interpretations.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2009-01-07
    Print ISSN: 0888-5885
    Electronic ISSN: 1520-5045
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-06-07
    Description: The long standing problem of identifying the emission mechanism operating in gamma-ray bursts (GRBs) has produced a myriad of possible models that have the potential of explaining the observations. Generally, the empirical Band function is fit to the observed gamma-ray data and the fit parameters that are used to infer which radiative mechanisms are at work in GRB outflows. In particular, the distribution of the Band function's low-energy power-law index, α, has led to the so-called synchrotron ‘line-of-death’ (LOD) which is a statement that the distribution cannot be explained by the simplest of synchrotron models alone. As an alternatively fitting model, a combination of a blackbody in addition to the Band function is used, which in many cases provide a better or equally good fit. It has been suggested that such fits would be able to alleviate the LOD problem for synchrotron emission in GRBs. However, these conclusions rely on the Band function's ability to fit a synchrotron spectrum within the observed energy band. In order to investigate if this is the case, we simulate synchrotron and synchrotron+blackbody spectra and fold them through the instrumental response of the Fermi Gamma-ray Burst Monitor (GBM). We then perform a standard data analysis by fitting the simulated data with both Band and Band+blackbody models. We find two important results: the synchrotron LOD is actually more severe than the original predictions: α LOD  ~ –0.8. Moreover, we find that intrinsic synchrotron+blackbody emission is insufficient to account for the entire observed α distribution. This implies that some other emission mechanism(s) are required to explain a large fraction of observed GRBs.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-06-12
    Description: The long standing problem of identifying the emission mechanism operating in gamma-ray bursts (GRBs) has produced a myriad of possible models that have the potential of explaining the observations. Generally, the empirical Band function is fit to the observed gamma-ray data and the fit parameters that are used to infer which radiative mechanisms are at work in GRB outflows. In particular, the distribution of the Band function's low-energy power-law index, α, has led to the so-called synchrotron ‘line-of-death’ (LOD) which is a statement that the distribution cannot be explained by the simplest of synchrotron models alone. As an alternatively fitting model, a combination of a blackbody in addition to the Band function is used, which in many cases provide a better or equally good fit. It has been suggested that such fits would be able to alleviate the LOD problem for synchrotron emission in GRBs. However, these conclusions rely on the Band function's ability to fit a synchrotron spectrum within the observed energy band. In order to investigate if this is the case, we simulate synchrotron and synchrotron+blackbody spectra and fold them through the instrumental response of the Fermi Gamma-ray Burst Monitor (GBM). We then perform a standard data analysis by fitting the simulated data with both Band and Band+blackbody models. We find two important results: the synchrotron LOD is actually more severe than the original predictions: α LOD  ~ –0.8. Moreover, we find that intrinsic synchrotron+blackbody emission is insufficient to account for the entire observed α distribution. This implies that some other emission mechanism(s) are required to explain a large fraction of observed GRBs.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2014-10-22
    Description: The understanding of the prompt -ray spectra of gamma-ray bursts (GRBs) is of great importance to correctly interpret the physical mechanisms that produce the underlying event as well as the structure of the relativistic jet from which the emission emanates. Time-resolved analysis of these spectra is the main method of extracting information from the data. In this work, several techniques for temporal binning of GRB spectra are examined to understand the systematics associated with each with the goal of finding the best method(s) to bin light curves for analysis. The following binning methods are examined: constant cadence (CC), Bayesian blocks (BBs), signal-to-noise (S/N) and Knuth bins (KB). I find that both the KB and BB methods reconstruct the intrinsic spectral evolution accurately while the S/N method fails in most cases. The CC method is accurate when the cadence is not too coarse but does not necessarily bin the data based on the true source variability. Additionally, the integrated pulse properties are investigated and compared to the time-resolved properties. If intrinsic spectral evolution is present, then the integrated properties are not useful in identifying physical and cosmological properties of GRBs without knowing the physical emission mechanism and its evolution.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2015-01-16
    Description: The analysis of gamma-ray burst (GRB) spectra with multicomponent emission models has become an important part of the field. In particular, multicomponent analysis where one component is a blackbody representing emission from a photosphere has enabled both a more detailed understanding of the energy content of the jet as well as the ability to examine the dynamic structure of the outflow. While the existence of a blackbody-like component has been shown to be significant and not a byproduct of background fluctuations, it is very possible that it can be an artefact of spectral evolution of a single component that is being poorly resolved in time. Herein, this possibility is tested by simulating a single component evolving in time and then folding the spectra through the Fermi detector response to generate time-tagged event Gamma-ray Burst Monitor (GBM) data. We then fit both the time-integrated and -resolved generated spectral data with a multicomponent model using standard tools. It is found that in time-integrated spectra, a blackbody can be falsely identified due to the spectral curvature introduced by the spectral evolution. However, in a time-resolved analysis defined by time bins that can resolve the evolution of the spectra, the significance of the falsely identified blackbody is very low. Additionally, the evolution of the artificial blackbody parameters does not match the recurring behaviour that has been identified in the actual observations. These results reinforce the existence of the blackbody found in time-resolved analysis of GRBs and stress the point that caution should be taken when using time-integrated spectral analysis for identifying physical properties of GRBs.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2013-07-26
    Description: Fermi Gamma-ray Space Telescope observations of GRB 110721A have revealed two emission components from the relativistic jet: emission from the photosphere, peaking at ~100 keV, and a non-thermal component, which peaks at ~1000 keV. We use the photospheric component to calculate the properties of the relativistic outflow. We find a strong evolution in the flow properties: the Lorentz factor decreases with time during the bursts from  ~ 1000 to ~150 (assuming a redshift z  = 2; the values are only weakly dependent on unknown efficiency parameters). Such a decrease is contrary to the expectations from the internal shocks and the isolated magnetar birth models. Moreover, the position of the flow nozzle measured from the central engine, r 0 , increases by more than two orders of magnitude. Assuming a moderately magnetized outflow we estimate that r 0 varies from 10 6 to ~10 9 cm during the burst. We suggest that the maximal value reflects the size of the progenitor core. Finally, we show that these jet properties naturally explain the observed broken power-law decay of the temperature which has been reported as a characteristic for gamma-ray burst pulses.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
  • 10
    Publication Date: 2019-03-01
    Description: Context. Damped Lyman-α (DLA) absorption-line systems at the redshifts of gamma-ray burst (GRB) afterglows offer a unique way to probe the physical conditions within star-forming galaxies in the early Universe. Aims. Here we built up a large sample of 22 GRBs at redshifts z 〉 2 observed with VLT/X-shooter in order to determine the abundances of hydrogen, metals, dust, and molecular species. This allows us to study the metallicity and dust depletion effects in the neutral interstellar medium at high redshift and to answer the question of whether (and why) there might be a lack of H2 in GRB-DLAs. Methods. We developed new methods based on the Bayesian inference package, PyMC, to FIT absorption lines and measure the column densities of different metal species as well as atomic and molecular hydrogen. The derived relative abundances are used to FIT dust depletion sequences and determine the dust-to-metals ratio and the host-galaxy intrinsic visual extinction. Additionally, we searched for the absorption signatures of vibrationally-excited H2 and carbon monoxide. Results. We find that there is no lack of H2-bearing GRB-DLAs. We detect absorption lines from molecular hydrogen in 6 out of 22 GRB afterglow spectra, with molecular fractions ranging between f ≃ 5 × 10−5 and f ≃ 0.04, and claim tentative detections in three additional cases. For the remainder of the sample, we measure, depending on S/N, spectral coverage and instrumental resolution, more or less stringent upper limits. The GRB-DLAs in our sample have on average low metallicities, [X/H]¯ ≈ −1.3, comparable to the population of extremely-strong QSO-DLAs (log N(H I) 〉 21.5). Furthermore, H2-bearing GRB-DLAs are found to be associated with significant dust extinction, AV 〉 0.1 mag, and dust-to-metals ratios DTM 〉 0.4, confirming the importance of dust grains for the production of molecules. All these systems exhibit neutral hydrogen column densities log N(H I) 〉 21.7. The overall fraction of H2 detections in GRB-DLAs is ≥ 27% (41% including tentative detections), which is three to four times larger than in the general QSO-DLA population. For 2 〈 z 〈 4, and considering column densities log N(H I) 〉 21.7, the H2 detection fraction is 60–80% in GRB-DLAs and in extremely strong QSO-DLAs. This is likely due to the fact that both GRB- and QSO-DLAs with high neutral hydrogen column densities are probed by sight-lines with small impact parameters, indicating that the absorbing gas is associated with the inner regions of the absorbing galaxy, where the gas pressure is higher and the conversion of H I to H2 takes place. In the case of GRB hosts, this diffuse molecular gas is located at distances ≳ 500 pc from the GRB and hence is unrelated to the star-forming region where the event occurred.
    Print ISSN: 0004-6361
    Electronic ISSN: 1432-0746
    Topics: Physics
    Published by EDP Sciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...