ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Years
  • 1
    Publication Date: 2021-10-25
    Description: Peridotites from the Tonga Trench are some of the deepest-derived and freshest ever obtained from the seafloor. This study reports new bulk-rock major-, trace-, highly siderophile-element (HSE) abundance and 187Os/188Os data, as well as major- and trace-element abundances of mineral phases for NOVA88D dredge peridotites. The samples are harzburgites that experienced varying degrees of serpentinisation, recorded in their loss on ignition values, from zero to 16.7%. Degree of serpentinisation in samples is correlated with Na, B, K, Sr, Ca, Rb and U, and weakly correlated with W, Fe, Pb, Cs and Li abundances, but is uncorrelated with other lithophile elements, most especially the rare earth elements. Serpentinisation had no systematic effect on the HSE abundances or 187Os/188Os compositions in the harzburgites. NOVA88D harzburgites record 〉18% melt depletion which has resulted in heterogenous distribution of the HSE within the rocks, likely due to retention of these elements within sub-micron sized alloy or sulphide phases. Time of rhenium depletion (TRD) ages, recorded by Os isotopes, average ~0.7 ±0.4 Ga and can be as ancient as 1.5 Ga. Some harzburgite compositions are consistent with minor melt infiltration processes modifying incompatible trace element compositions and Re abundances, with a possible melt infiltration event at ~120 Ma based on 187Re-188Os, prior to the inception of subduction at the Tonga Trench at ~52 Ma. Evidence for ancient melt depletion, combined with limited melt processing since inception of subduction suggests that NOVA88D harzburgites represent melt residues incorporated into the Tonga arc, rather than their geochemical signatures being produced beneath the recent arc. Estimates of fO2 (~-0.4 ±0.4 ΔFMQ) and olivine-spinel equilibration temperatures for the Tonga Trench samples (830 ±120 ̊C) are similar to abyssal peridotites and some Izu-Mariana-Bonin peridotites. These values are unlikely to relate directly to recorded degrees of melt depletion and melt depletion ages in the rocks. Refractory residues from prior melt depletion events are probably common in the convecting mantle, and those with high degrees of melt depletion (〉18%) and relatively ancient melt depletion ages (
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...