ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2016-10-04
    Description: The Year of Polar Prediction (YOPP) is planned for mid-2017 to mid-2019, centred on 2018. Its goal is to enable a significant improvement in environmental prediction capabilities for the polar regions and beyond, by coordinating a period of intensive observing, modelling, prediction, verification, user-engagement and education activities. With a focus on time scales from hours to a season, YOPP is a major initiative of the World Meteorological Organization’s World Weather Research Programme (WWRP) and a key component of the Polar Prediction Project (PPP). YOPP is being planned and coordinated by the PPP Steering Group together with representatives from partners and other initiatives, including the World Climate Research Programme’s Polar Climate Predictability Initiative (PCPI). The objectives of YOPP are to: 1. Improve the existing polar observing system (enhanced coverage, higher-quality observations). 2. Gather additional observations through field programmes aimed at improving understanding of key polar processes. 3. Develop improved representation of key polar processes in (un)coupled models used for prediction. 4. Develop improved (coupled) data assimilation systems accounting for challenges in the polar regions such as sparseness of observational data. 5. Explore the predictability of the atmosphere-cryosphere-ocean system, with a focus on sea ice, on time scales from hours to a season. 6. Improve understanding of linkages between polar regions and lower latitudes, assess skill of models representing these linkages, and determine the impact of improved polar prediction on forecast skill in lower latitudes. 7. Improve verification of polar weather and environmental predictions to obtain better quantitative knowledge on model performance, and on the skill, especially for user- relevant parameters. 8. Identify various stakeholders and establish their decisionmaking needs with respect to weather, climate, ice, and related environmental services. 9. Assess the costs and benefits of using predictive information for a spectrum of users and services. 10. Provide training opportunities to generate a sound knowledge base (and its transfer across generations) on polar prediction related issues. YOPP is implemented in three distinct phases. During the YOPP Preparation Phase (2013 through to mid-2017) this Implementation Plan was developed, which includes key outcomes of consultations with partners at the YOPP Summit in July 2015. Plans will be further developed and refined through focused international workshops. There will be engagement with stakeholders and arrangement of funding, coordination of observations and modelling activities, and preparatory research. During the YOPP Core Phase (mid-2017 to mid-2019), four elements will be staged: intensive observing periods for both hemispheres, a complementary intensive modelling and prediction period, a period of enhanced monitoring of forecast use in decisionmaking including verification, and a special educational effort. Finally, during the YOPP Consolidation Phase (mid-2019 to 2022) the legacy of data, science and publications will be organized. The WWRP-PPP Steering Group provides endorsement throughout the YOPP phases for projects that contribute to YOPP. This process facilitates coordination and enhances visibility, communication, and networking.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Miscellaneous , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-01-27
    Description: The Year of Polar Prediction (YOPP) has the mission to enable a significant improvement in environmental prediction capabilities for the polar regions and beyond, by coordinating a period of intensive observing, modelling, prediction, verification, user- engagement and education activities. The YOPP Core Phase will be from mid-2017 to mid-2019, flanked by a Preparation Phase and a Consolidation Phase. YOPP is a key component of the World Meteorological Organization – World Weather Research Programme (WMO-WWRP) Polar Prediction Project (PPP). The objectives of YOPP are to: 1. Improve the existing polar observing system (better coverage, higher-quality observations); 2. Gather additional observations through field programmes aimed at improving understanding of key polar processes; 3. Develop improved representation of key polar processes in coupled (and uncoupled) models used for prediction; 4. Develop improved (coupled) data assimilation systems accounting for challenges in the polar regions such as sparseness of observational data; 5. Explore the predictability of the atmosphere-cryosphere-ocean system, with a focus on sea ice, on time scales from days to seasons; 6. Improve understanding of linkages between polar regions and lower latitudes and assess skill of models representing these linkages; 7. Improve verification of polar weather and environmental predictions to obtain better quantitative knowledge on model performance, and on the skill, especially for user-relevant parameters; 8. Demonstrate the benefits of using predictive information for a spectrum of user types and services; 9. Provide training opportunities to generate a sound knowledge base (and its transfer across generations) on polar prediction related issues. The PPP Steering Group provides endorsement for projects that contribute to YOPP to enhance coordination, visibility, communication, and networking. This White Paper is based largely on the much more comprehensive YOPP Implementation Plan (WWRP/PPP No. 3 – 2014), but has an emphasis on Arctic observations.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-17
    Description: What: 120 scientists, stakeholders, and representatives from operational forecasting centers, international bodies, and funding agencies assembled to make significant advances in the planning of the Year of Polar Prediction; When: 13-15 July 2015; Where: WMO Headquarters, Geneva, Switzerland
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-03-03
    Description: Arctic observing and data systems have been widely recognized as critical infrastructures to support decision making and understanding across sectors in the Arctic and globally. Yet due to broad and persistent issues related to coordination, deployment infrastructure and technology gaps, the Arctic remains among the most poorly observed regions on the planet from the standpoint of conventional observing systems. Sustaining Arctic Observing Networks (SAON) was initiated in 2011 to address the persistent shortcomings in the coordination of Arctic observations that are maintained by its many national and organizational partners. SAON set forth a bold vision in its 2018 – 28 strategic plan to develop a roadmap for Arctic observing and data systems (ROADS) to specifically address a key gap in coordination efforts—the current lack of a systematic planning mechanism to develop and link observing and data system requirements and implementation strategies in the Arctic region. This coordination gap has hampered partnership development and investments toward improved observing and data systems. ROADS seeks to address this shortcoming through generating a systems-level view of observing requirements and implementation strategies across SAON’s many partners through its roadmap. A critical success factor for ROADS is equitable participation of Arctic Indigenous Peoples in the design and development process, starting at the process design stage to build needed equity. ROADS is both a comprehensive concept, building from a societal benefit assessment approach, and one that can proceed step-wise so that the most imperative Arctic observations—here described as shared Arctic variables (SAVs)—can be rapidly improved. SAVs will be identified through rigorous assessment at the beginning of the ROADS process, with an emphasis in that assessment on increasing shared benefit of proposed system improvements across a range of partnerships from local to global scales. The success of the ROADS process will ultimately be measured by the realization of concrete investments in and well-structured partnerships for the improved sustainment of Arctic observing and data systems in support of societal benefit.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev , info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-09-29
    Description: The Association of Polar Early Career Scientists (APECS) is an international, interdisciplinary NGO for undergraduate and graduate students, postdoctoral researchers, early career professionals, educators, and others interested in polar regions and the wider cryosphere. The existence of APECS as a stakeholder is fundamental towards developing diverse future leadership in the Arctic community. Celebrating its 10th anniversary in 2017, APECS has grown from a small group established during the 2007/08 International Polar Year (IPY) to a global community of more than 2,300 actively-engaged early career researchers (ECRs) and professionals (ECPs) interested in the polar regions, from over 60 countries; within the last decade, more than 7,500 individuals joined our network during the early stages of their careers. APECS creates opportunities for innovative collaborations and information exchange amongst ECRs and established professionals, thereby helping to recruit, retain, increase cooperation amongst, and promote future polar experts. APECS works with polar organizations to enable skilled early career representatives to contribute to their goals and projects, including the International Arctic Science Committee (IASC) and the Arctic Council Working Groups ‘Arctic Monitoring and Assessment Programme’ (AMAP) and ‘Conservation of Arctic Flora and Fauna’ (CAFF). In these capacities, APECS members contribute to the scientific activities of the working groups, synthesizing research to identify and address areas of concern to Arctic ecosystems, communities, and Arctic residents. This presentation discusses how APECS contributes to training future leadership in the Arctic community and how members influence polar science and policy. We highlight how APECS updates activities to reflect scientific, policy, and environmental challenges in order to provide the most relevant resources to our members. Early engagement of ECRs and ECPs develops a workforce more adept to bridging the divide between scientific research and sustainable development in the Arctic and, therefore, is an investment in the future of the Arctic.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev , info:eu-repo/semantics/conferenceObject
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    In:  EPIC3Arctic Science Summit Week, Prague, Czech Republic, 2017-03-31-2017-04-07
    Publication Date: 2022-09-29
    Description: The Association of Polar Early Career Scientists (APECS) is a multidisciplinary, international organization dedicated to maintaining a network of early career researchers (ECRs) and professionals (ECPs) to share ideas, develop collaborative research directions, provide opportunities for career development, and promote education and outreach as an integral component of Polar research. Science outreach is one of APECS’ key objectives and we have found that online media is a powerful tool for STEAM (Science, Technology, Engineering, Art, and Mathematics) knowledge transfer. We introduce the use of online presentations as a platform for communication, education, and networking. APECS’ Online Conference, virtual posters, and webinar series provide case studies to examine how online technology bridges geographic and disciplinary boundaries. APECS’ Online Conference allows ECRs and ECPs to present their research to an interactive, online room of viewers. The third iteration of this annual event (March 2017) appealed to science communicators with the theme: “Outside the Box: encouraging alternative solutions for undertaking and communicating polar research”. Virtual poster sessions have allowed members to share work on an array of topics, from whaling and tourism to showcasing studies affiliated with specific national research programs. Webinars have covered a variety of skills-based and scientific topics, with invited speakers addressing everything from writing grant proposals to eco-cultural communication. Each presentation is recorded and saved on APECS’ website as a free resource. ECRs, ECPs, and APECS mentors from around the world attend our events, promoting diversity in networking and helping steer the Arctic community in positive directions. We will provide examples of connections fostered by and benefits of online events, including easier dissemination of ideas across geographically distant regions and minimal cost. While this presentation focuses on APECS’ experiences, we will highlight how innovative communication promotes international cooperation and offer suggestions on how to incorporate similar elements into other outreach programs.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev , info:eu-repo/semantics/conferenceObject
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
  • 8
    Publication Date: 2020-06-25
    Description: Scientific meetings, conferences, field schools and workshops provide essential networking and training opportunities for early career researchers, but in highly international fields like polar sciences, attending these events can involve extensive travel. We surveyed Association of Polar Early Career Scientists members and other early career members of the polar science community to investigate the geographic and international variability in travel support relative to costs across the early stages of a researcher's career (Masters students, PhD students, post-docs and those in faculty or permanent research positions). 190 respondents from 38 countries answered questions on the perceived availability of different types and sources of travel funding and described up to three events they attended over the last two years. We found that the cost of attendance prevented nearly three-quarters of respondents from participating in at least one career-relevant events in the preceding two years. Due to insufficient research funding, early career researchers frequently have to top up partial support with personal funds. Increased event-based travel support would help to reduce out of pocket expenses, as would the timely notification of a travel award to benefit from early bird registration and cheaper travel and accommodation. Replacing the more common practice of travel reimbursement with a travel advance would remove another barrier to attendance. Large disparities in what kinds of expenses are covered exist between geographic regions and funding mechanisms. Addressing the disparities in travel support for career-relevant events will promote diversity and foster inclusion in the next generation of polar scientists.
    Print ISSN: 1680-7340
    Electronic ISSN: 1680-7359
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2015-05-01
    Description: Air-deployed microbuoys (ADMBs) were developed as a means of measuring subsurface temperatures in the marginal ice zone (MIZ) over campaign-duration time scales to better understand how MIZ surface layer heat content accelerates melt rates at the edge of the ice pack. ADMBs are small, low-cost buoys deployable from unmanned aircraft and are capable of measuring temperatures to 0.1°C absolute accuracy at the surface, 1-m, and 2-m depth, along with GPS position. Each ADMB contains a microcontroller, GPS, 900-MHz radio, flash electrically erasable programmable read-only memory (EEPROM), battery, and a set of temperature sensors to monitor conditions for up to 10 days. A communications board on an overflying aircraft autonomously deploys each ADMB and collects data from previously deployed ADMBs for analysis. The 2013 Marginal Ice Zone Observations and Processes Experiment (MIZOPEX) campaign deployed ADMBs into the summer melt season MIZ north of Oliktok Point, Alaska, collecting over 400 h of data from two clusters of buoys during the short field campaign. Initial results indicate that SST is a good measure of upper-ocean temperature in the MIZ when conditions are well mixed, but that is often not the case. In areas with higher ice concentration, surface temperatures tend to underestimate the temperature of the subsurface, while in areas of low ice concentration, SSTs overestimate the subsurface temperature.
    Print ISSN: 0739-0572
    Electronic ISSN: 1520-0426
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2016-03-18
    Description: In September 2012 five Aerosonde unmanned aircraft were used to make measurements of the atmospheric state over the Terra Nova Bay polynya, Antarctica, to explore the details of air–sea ice–ocean coupling. A total of 14 flights were completed in September 2012. Ten of the flight missions consisted of two unmanned aerial systems (UAS) sampling the atmosphere over Terra Nova Bay on 5 different days, with one UAS focusing on the downwind evolution of the air mass and a second UAS flying transects roughly perpendicular to the low-level winds. The data from these coordinated UAS flights provide a comprehensive three-dimensional data set of the atmospheric state (air temperature, humidity, pressure, and wind) and surface skin temperature over Terra Nova Bay. The remaining UAS flights during the September 2012 field campaign included two local flights near McMurdo Station for flight testing, a single UAS flight to Terra Nova Bay, and a single UAS flight over the Ross Ice Shelf and Ross Sea polynya. A data set containing the atmospheric and surface data as well as operational aircraft data have been submitted to the United States Antarctic Program Data Coordination Center (USAP-DCC, http://www.usap-data.org/) for free access (http://gcmd.nasa.gov/getdif.htm?NSF-ANT10-43657, doi:10.15784/600125).
    Print ISSN: 1866-3508
    Electronic ISSN: 1866-3516
    Topics: Geosciences
    Published by Copernicus
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...