ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Keywords
Years
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Piontek, Judith; Lunau, Mirko; Händel, Nicole; Borchard, Corinna; Wurst, Mascha; Engel, Anja (2010): Acidification increases microbial polysaccharide degradation in the ocean. Biogeosciences, 7(5), 1615-1625, https://doi.org/10.5194/bg-7-1615-2010
    Publication Date: 2023-11-15
    Description: With the accumulation of anthropogenic carbon dioxide (CO2), a proceeding decline in seawater pH has been induced that is referred to as ocean acidification. The ocean's capacity for CO2 storage is strongly affected by biological processes, whose feedback potential is difficult to evaluate. The main source of CO2 in the ocean is the decomposition and subsequent respiration of organic molecules by heterotrophic bacteria. However, very little is known about potential effects of ocean acidification on bacterial degradation activity. This study reveals that the degradation of polysaccharides, a major component of marine organic matter, by bacterial extracellular enzymes was significantly accelerated during experimental simulation of ocean acidification. Results were obtained from pH perturbation experiments, where rates of extracellular alpha- and beta-glucosidase were measured and the loss of neutral and acidic sugars from phytoplankton-derived polysaccharides was determined. Our study suggests that a faster bacterial turnover of polysaccharides at lowered ocean pH has the potential to reduce carbon export and to enhance the respiratory CO2 production in the future ocean.
    Keywords: alpha-glucosidase activity per cell; Bacteria; Bacteria, abundance, standard deviation; beta-glucosidase activity per cell; Carbon, organic, particulate; Carbon, organic, particulate, standard deviation; Cell-specific glucosidase activity; Cell-specific glucosidase activity, standard deviation; Combined glucose loss; Combined glucose loss, standard deviation; Element analyser CNS, EURO EA; EPOCA; European Project on Ocean Acidification; Experimental treatment; FACSCalibur flow-cytometer (Becton Dickinson); High Performance anion-exchange chromatography; Light:Dark cycle; Measured; Particulate organic carbon loss; Particulate organic carbon loss, standard deviation; pH; Polysacchrides loss; Polysacchrides loss, standard deviation; Radiation, photosynthetically active; Sample ID; see reference(s); Temperature, water; Time, incubation; WTW 340i pH-analyzer and WTW SenTix 81-electrode
    Type: Dataset
    Format: text/tab-separated-values, 452 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Borchard, Corinna; Borges, Alberto Vieira; Händel, Nicole; Engel, Anja (2011): Biogeochemical response of Emiliania huxleyi (PML B92/11) to elevated CO2 and temperature under phosphorous limitation: A chemostat study. Journal of Experimental Marine Biology and Ecology, 410, 61-71, https://doi.org/10.1016/j.jembe.2011.10.004
    Publication Date: 2024-03-22
    Description: The present study investigates the combined effect of phosphorous limitation, elevated partial pressure of CO2 (pCO2) and temperature on a calcifying strain of Emiliania huxleyi (PML B92/11) by means of a fully controlled continuous culture facility. Two levels of phosphorous limitation were consecutively applied by renewal of culture media (N:P = 26) at dilution rates (D) of 0.3 d- and 0.1 d-1. CO2 and temperature conditions were 300, 550 and 900 µatm pCO2 at 14 °C and 900 µatm pCO2 at 18 °C. In general, the steady state cell density and particulate organic carbon (POC) production increased with pCO2, yielding significantly higher concentrations in cultures grown at 900 µatm pCO2 compared to 300 and 550 µatm pCO2. At 900 µatm pCO2, elevation of temperature as expected for a greenhouse ocean, further increased cell densities and POC concentrations. In contrast to POC concentration, C-quotas (pmol C cell-1) were similar at D = 0.3 d-1 in all cultures. At D = 0.1 d-1, a reduction of C-quotas by up to 15% was observed in the 900 µatm pCO2 at 18 °C culture. As a result of growth rate reduction, POC:PON:POP ratios deviated strongly from the Redfield ratio, primarily due to an increase in POC. Ratios of particulate inorganic and organic carbon (PIC:POC) ranged from 0.14 to 0.18 at D = 0.3 d-1, and from 0.11 to 0.17 at D = 0.1 d-1, with variations primarily induced by the changes in POC. At D = 0.1 d-1, cell volume was reduced by up to 22% in cultures grown at 900 µatm pCO2. Our results indicate that changes in pCO2, temperature and phosphorus supply affect cell density, POC concentration and size of E. huxleyi (PML B92/11) to varying degrees, and will likely impact bloom development as well as biogeochemical cycling in a greenhouse ocean.
    Keywords: Alkalinity, total; Aragonite saturation state; Bicarbonate ion; Biomass/Abundance/Elemental composition; Bottles or small containers/Aquaria (〈20 L); Calcite saturation state; Calculated, see reference(s); Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon, organic, particulate; Carbon, organic, particulate/Nitrogen, organic, particulate ratio; Carbon, organic, particulate/Phosphorus, organic, particulate ratio; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Chromista; Colorimetry; Element analyser CNS, EURO EA; Emiliania huxleyi; EPOCA; EUR-OCEANS; European network of excellence for Ocean Ecosystems Analysis; European Project on Ocean Acidification; Experimental treatment; Experiment day; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Haptophyta; Infrared gas analyzer (LI-COR LI-6252); Laboratory experiment; Laboratory strains; Light:Dark cycle; Macro-nutrients; Measured; Nitrate; Nitrogen, inorganic, dissolved; Nitrogen, organic; Nitrogen, organic, particulate/Phosphorus, organic, particulate ratio; Not applicable; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Particulate organic carbon, per cell; Particulate organic carbon production; Particulate organic carbon production per cell; Particulate organic nitrogen per cell; Particulate organic nitrogen production; Particulate organic phosphorus per cell; Particulate organic phosphorus production; Particulate organic phosphorus production per cell; Pelagos; pH; Phosphate; Phosphorus, inorganic; Phosphorus, organic, particulate; Phytoplankton; Primary production/Photosynthesis; Production of particulate organic nitrogen; Radiation, photosynthetically active; Revelle factor; Salinity; Salinometer - Tropic Marin Sea Salt, Dr. Biener GmbH, Germany; Sample ID; Single species; Spectrophotometry; Temperature; Temperature, water; WTW 340i pH-analyzer and WTW SenTix 81-electrode
    Type: Dataset
    Format: text/tab-separated-values, 1068 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Borchard, Corinna; Engel, Anja (2012): Organic matter exudation by Emiliania huxleyi under simulated future ocean conditions. Biogeosciences, 9(8), 3405-3423, https://doi.org/10.5194/bg-9-3405-2012
    Publication Date: 2024-03-22
    Description: Emiliania huxleyi (strain B 92/11) was exposed to different nutrient supply, CO2 and temperature conditions in phosphorus controlled chemostats to investigate effects on organic carbon exudation and partitioning between the pools of particulate organic carbon (POC) and dissolved organic carbon (DOC). 14C incubation measurements for primary production (PP) and extracellular release (ER) were performed. Chemical analysis included the amount and composition of high molecular weight (〉1 kDa) dissolved combined carbohydrates (HMW-dCCHO), particulate combined carbohydrates (pCCHO) and the carbon content of transparent exopolymer particles (TEP-C). Applied CO2 and temperature conditions were 300, 550 and 900 µatm pCO2 at 14 °C, and additionally 900 µatm pCO2 at 18 °C simulating a greenhouse ocean scenario. Enhanced nutrient stress by reducing the dilution rate (D) from D = 0.3 /d to D = 0.1 /d (D = µ) induced the strongest response in E. huxleyi. At µ = 0.3 /d, PP was significantly higher at elevated CO2 and temperature and DO14C production correlated to PO14C production in all treatments, resulting in similar percentages of extracellular release (PER; (DO14C production/PP) × 100) averaging 3.74 ± 0.94%. At µ = 0.1 /d, PO14C production decreased significantly, while exudation of DO14C increased. Thus, indicating a stronger partitioning from the particulate to the dissolved pool. Maximum PER of 16.3 ± 2.3% were observed at µ = 0.1 /d at elevated CO2 and temperature. While cell densities remained constant within each treatment and throughout the experiment, concentrations of HMW-dCCHO, pCCHO and TEP were generally higher under enhanced nutrient stress. At µ= 0.3 /d, pCCHO concentration increased significantly with elevated CO2 and temperature. At µ = 0.1 /d, the contribution (mol % C) of HMW-dCCHO to DOC was lower at elevated CO2 and temperature while pCCHO and TEP concentrations were higher. This was most pronounced under greenhouse conditions. Our findings suggest a stronger transformation of primary produced DOC into POC by coagulation of exudates under nutrient limitation. Our results further imply that elevated CO2 and temperature will increase exudation by E. huxleyi and may affect organic carbon partitioning in the ocean due to an enhanced transfer of HMW-dCCHO to TEP by aggregation processes.
    Keywords: Alkalinity, total; Arabinose/Galactosamine; Aragonite saturation state; Bicarbonate ion; BIOACID; Biological Impacts of Ocean Acidification; Bottles or small containers/Aquaria (〈20 L); Calcite saturation state; Calculated using seacarb after Nisumaa et al. (2010); Carbohydrates, dissolved hydrolyzable; Carbohydrates, particulate hydrolyzable; Carbohydrates, total combined; Carbon, inorganic, dissolved; Carbon, organic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Chromista; Emiliania huxleyi; EPOCA; European Project on Ocean Acidification; Extracellular release; Exudation as determined by 14C DOC production; Fucose; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Galactose; Galacturonic acid; Glucosamine; Glucose; Glucuronic acid; Growth/Morphology; Growth rate; Haptophyta; Laboratory experiment; Laboratory strains; Mannose/Xylose; Not applicable; OA-ICC; Ocean Acidification International Coordination Centre; Other metabolic rates; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Pelagos; pH; Phytoplankton; Primary production/Photosynthesis; Primary production of carbon per day; Primary production of POC as determined by 14C POC production; Replicate; Revelle factor; Rhamnose; Salinity; Single species; Species; Temperature; Temperature, water; Transparent exopolymer particles; Transparent exopolymer particles/Carbon, organic, particulate ratio; Treatment
    Type: Dataset
    Format: text/tab-separated-values, 1269 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-03-28
    Keywords: Absorption coefficient, 325 nm; Absorption coefficient, 355 nm; Absorption coefficient, 375 nm; Cape Verde; CapeVerde_2012_Mesocosm; Carbon, organic, dissolved; Climate - Biogeochemistry Interactions in the Tropical Ocean; Coomassie stainable particles; Coomassie stainable particles, abundance; Coomassie stainable particles, equivalent spherical diameter; DATE/TIME; Day of experiment; Fluorescence, dissolved organic matter, component; MESO; Mesocosm experiment; Nitrogen, organic, dissolved; Nitrogen, total dissolved; Ratio; Run ID; Sample code/label; SFB754; Slope; Slope between 275 nm and 295 nm; Slope between 350 nm and 400 nm; Slope ratio; Spectral slope of colored dissolved organic matter absorption; Transparent exopolymer particles; Transparent exopolymer particles, abundance; Transparent exopolymer particles, equivalent spherical diameter; Treatment
    Type: Dataset
    Format: text/tab-separated-values, 6236 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-10-20
    Description: Ocean deoxygenation due to climate change may alter redox-sensitive nutrient cycles in the marine environment. The productive eastern tropical North Atlantic (ETNA) upwelling region may be particularly affected when the relatively moderate oxygen minimum zone (OMZ) deoxygenates further and microbially driven nitrogen (N) loss processes are promoted. Consequently, water masses with a low nitrogen to phosphorus (N : P) ratio could reach the euphotic layer, possibly influencing primary production in those waters. Previous mesocosm studies in the oligotrophic Atlantic Ocean identified nitrate availability as a control of primary production, while a possible co-limitation of nitrate and phosphate could not be ruled out. To better understand the impact of changing N : P ratios on primary production and N2 fixation in the ETNA surface ocean, we conducted land-based mesocosm experiments with natural plankton communities and applied a broad range of N : P ratios (2.67–48). Silicic acid was supplied at 15 µmol L−1 in all mesocosms. We monitored nutrient drawdown, biomass accumulation and nitrogen fixation in response to variable nutrient stoichiometry. Our results confirmed nitrate to be the key factor determining primary production. We found that excess phosphate was channeled through particulate organic matter (POP) into the dissolved organic matter (DOP) pool. In mesocosms with low inorganic phosphate availability, DOP was utilized while N2 fixation increased, suggesting a link between those two processes. Interestingly this observation was most pronounced in mesocosms where nitrate was still available, indicating that bioavailable N does not necessarily suppress N2 fixation. We observed a shift from a mixed cyanobacteria–proteobacteria dominated active diazotrophic community towards a diatom-diazotrophic association of the Richelia-Rhizosolenia symbiosis. We hypothesize that a potential change in nutrient stoichiometry in the ETNA might lead to a general shift within the diazotrophic community, potentially influencing primary productivity and carbon export.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2020-10-20
    Description: In open-ocean regions, as is the Eastern Tropical North Atlantic (ETNA), pelagic production is the main source of dissolved organic matter (DOM) and is affected by dissolved inorganic nitrogen (DIN) and phosphorus (DIP) concentrations. Changes in pelagic production under nutrient amendments were shown to also modify DOM quantity and quality. However, little information is available about the effects of nutrient variability on chromophoric (CDOM) and fluorescent (FDOM) DOM dynamics. Here we present results from two mesocosm experiments ("Varied P" and "Varied N") conducted with a natural plankton community from the ETNA, where the effects of DIP and DIN supply on DOM optical properties were studied. CDOM accumulated proportionally to phytoplankton biomass during the experiments. Spectral slope (S) decreased over time indicating accumulation of high molecular weight DOM. In Varied N, an additional CDOM portion, as a result of bacterial DOM reworking, was determined. It increased the CDOM fraction in DOC proportionally to the supplied DIN. The humic-like FDOM component (Comp.1) was produced by bacteria proportionally to DIN supply. The protein-like FDOM component (Comp.2) was released irrespectively to phytoplankton or bacterial biomass, but depended on DIP and DIN concentrations. Under high DIN supply, Comp.2 was removed by bacterial reworking, leading to an accumulation of humic-like Comp.1. No influence of nutrient availability on amino acid-like FDOM component in peptide form (Comp.3) was observed. Comp.3 potentially acted as an intermediate product during formation or degradation of Comp.2. Our findings suggest that changes in nutrient concentrations may lead to substantial responses in the quantity and quality of optically active DOM and, therefore, might bias results of the applied in situ optical techniques for an estimation of DOC concentrations in open-ocean regions.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    In:  [Poster] In: ASLO Aquatic Sciences Meeting 2015, 22.-27.02.2015, Granada, Spain .
    Publication Date: 2015-03-04
    Description: Extracellular release (ER) by phytoplankton is a major source of dissolved organic carbon (DOC) in marine ecosystems and accompanies primary production during all growth stages. Size and composition of released molecules, and the extent to which ER occurs passively, by leakage, or actively, by exudation is largely unknown. We report on ER by the widespread and bloom-forming coccolithophore Emiliania huxleyi grown in phosphorus controlled chemostats. 14C incubations were accomplished to determine primary production (PP) and the release of dissolved organic carbon (DO14C). High molecular weight dissolved combined carbohydrates (HMW-dCCHO) as major components of ER were determined using HPAEC-PAD. Fractionation of ER products was obtained for distinct size classes (〈0.40 µm, 〈1000 kDa, 〈100 kDa and 〈10 kDa) of DO14C and HMW-dCCHO. Despite similar ER rates, composition of released carbohydrates varied largely between size fractions. We discuss pathways of algal carbohydrate release that could explain different molecular signatures, and how differences in ER composition may be related to distinct ecological and biogeochemical functions.
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2020-10-20
    Description: Gel particles such as the polysaccharidic transparent exopolymer particles (TEP) and the proteinaceous Coomassie stainable particles (CSP) play an important role in marine biogeochemical and ecological processes like particle aggregation and export, or microbial nutrition and growth. So far, effects of nutrient availability or of changes in nutrient ratios on gel particle production and fate are not well understood. The tropical ocean includes large oxygen minimum zones, where nitrogen losses due to anaerobic microbial activity result in a lower supply of nitrate relative to phosphate to the euphotic zone. Here, we report of two series of mesocosm experiments that were conducted with natural plankton communities collected from the eastern tropical North Atlantic (ETNA) close to Cape Verde in October 2012. The experiments were performed to investigate how different phosphate (experiment 1, Varied P: 0.15–1.58 μmol L−1) or nitrate (experiment 2, Varied N: 1.9–21.9 μmol L−1) concentrations affect the abundance and size distribution of TEP and CSP. In the days until the bloom peak was reached, a positive correlation between gel particle abundance and Chl a concentration was determined, linking the release of dissolved gel precursors and the subsequent formation of gel particles to autotrophic production. After the bloom peak, gel particle abundance remained stable or even increased, implying a continued partitioning of dissolved into particulate organic matter after biomass production itself ceased. During both experiments, differences between TEP and CSP dynamics were observed; TEP were generally more abundant than CSP. Changes in size distribution indicated aggregation of TEP after the bloom, while newly formed CSP decomposed. Abundance of gel particles clearly increased with nitrate concentration during the second experiment, suggesting that changes in [DIN] : [DIP] ratios can affect gel particle formation with potential consequences for carbon and nitrogen cycling as well as food web dynamics in tropical ecosystems.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2013-05-21
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    In:  [Talk] In: 45. International Liege Colloquium on Ocean Dynamics: The variability of primary production in the ocean: from the synoptic to the global scale, 13.-17.05.2013, Liege, Belgium .
    Publication Date: 2013-05-21
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...