ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Publikationsdatum: 2019-08-13
    Beschreibung: A human mission to Mars would present an unprecedented opportunity to investigate the earliest history of the solar system. This history that has largely been overwritten on Earth by active geological processing throughout its history, but on Mars, large swaths of the ancient crust remain exposed at the surface, allowing us to investigate martian processes at the earliest time periods when life first appeared on the Earth. Mars' surface has been largely frozen in place for 4 billion years, and after losing its atmosphere and magnetic field what re-mains is an ancient landscape of former hydrothermal systems, river beds, volcanic eruptions, and impact craters. This allows us to investigate scientific questions ranging from the nature of the impact history of the solar system to the origins of life. We present here a summary of the findings of the Human Science Objectives Science Analysis Group, or HSO-SAG chartered by MEPAG in 2015 to address science objectives and landing site criteria for future human missions to Mars (Niles, Beaty et al. 2015). Currently, NASA's plan to land astronauts on Mars in the mid 2030's would allow for robust human exploration of the surface in the next 35 years. We expect that crews would be able to traverse to sites up to 100 km away from the original landing site using robust rovers. A habitat outfitted with state of the art laboratory facilities that could enable the astronauts to perform cutting edge science on the surface of Mars. Robotic/human partnership during exploration would further enhance the science return of the mission.
    Schlagwort(e): Lunar and Planetary Science and Exploration; Space Sciences (General)
    Materialart: JSC-CN-38680 , NASA Planetary Science Vision 2050 Workshop; Feb 27, 2017 - Mar 01, 2017; Washington, DC; United States
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2019-08-14
    Beschreibung: No abstract available
    Schlagwort(e): Space Sciences (General)
    Materialart: MSFC-E-DAA-TN25540 , NASA Exploration Science Forum; Jul 21, 2015 - Jul 23, 2015; Moffett Field, CA; United States
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2019-08-14
    Beschreibung: NASA has been analyzing a number of mission concepts and activities that involve low-latency telerobotic (LLT) operations. One mission concept that will be covered in this presentation is Crew-Assisted Sample Return which involves the crew acquiring samples (1) that have already been delivered to space, and or acquiring samples via LLT from orbit to a planetary surface and then launching the samples to space to be captured in space and then returned to the earth with the crew. Both versions of have key roles for low-latency teleoperations. More broadly, the NASA Evolvable Mars Campaign is exploring a number of other activities that involve LLT, such as: (a) human asteroid missions, (b) PhobosDeimos missions, (c) Mars human landing site reconnaissance and site preparation, and (d) Mars sample handling and analysis. Many of these activities could be conducted from Mars orbit and also with the crew on the Mars surface remotely operating assets elsewhere on the surface, e.g. for exploring Mars special regions and or teleoperating a sample analysis laboratory both of which may help address planetary protection concerns. The operational and technology implications of low-latency teleoperations will be explored, including discussion of relevant items in the NASA Technology Roadmap and also how previously deployed robotic assets from any source could subsequently be used by astronauts via LLT.
    Schlagwort(e): Lunar and Planetary Science and Exploration
    Materialart: GSFC-E-DAA-TN23785 , SpaceOps 2015 Workshop; Jun 10, 2015 - Jun 12, 2015; Rome; Italy
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Publikationsdatum: 2019-07-13
    Beschreibung: Contamination control issues are particularly challenging for long-term human spaceflight and are associated with the search for life, dynamic environmental conditions, human-robotic-environment interaction, sample collection and return, biological processes, waste management, long-term environmental disturbance, etc. These issues impact mission success, human health, planetary protection, and research and discovery. Mitigation and control techniques and strategies may include and integrate long-term environmental monitoring and reporting, contamination control and planetary protection protocols, habitation site design, habitat design, and surface exploration and traverse pathways and area access planning.
    Schlagwort(e): Space Sciences (General)
    Materialart: GSFC-E-DAA-TN44627 , 2017 NASA Contamination, Coatings, Materials, and Planetary Protection (CCMPP) Workshop; Jul 18, 2017 - Jul 20, 2017; Greenbelt, MD; United States
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...