ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Years
  • 1
    Publication Date: 2007-09-14
    Print ISSN: 1045-2249
    Electronic ISSN: 1465-7279
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-01-26
    Description: Permafrost carbon pools are vulnerable to a warming climate and bear the potential to alter the terrestrial carbon cycle. In the extensive drained lake basins that span across Arctic lowlands, enhanced degradation of organic-rich deposits upon permafrost thaw could lead to greenhouse gas emissions to the atmosphere. Yet, little is known on the geochemical properties of the sediments in these basins and on the rate of release of greenhouse gases. This study investigates processes and intensity of organic matter decomposition and associated potential greenhouse gas production in thawed sediment from drained lake basins on the Yukon Coastal Plain in the western Canadian Arctic. We conducted a three-month low temperature (4 °C) incubation experiment, during which we measured carbon dioxide (CO2) and methane (CH4) production in thawed sediment from two permafrost cores from adjacent drained lake basins. To simulate current and near future greenhouse gas production potential we incubated material from the active layer as well as from the transition layer and permafrost to account for projected active layer deepening. Four replicates of each sample were incubated under aerobic and anaerobic conditions, respectively. CO2 and CH4 concentrations were measured by gas chromatography. The experiment was supplemented by a comprehensive lipid biomarker analysis of the same sample material before and after the incubation covering n-alkanes, n-fatty acids, triterpenoids and hopanes. Biomarker concentrations and indices (average chain length, carbon preference index, higher-plant fatty acid index) gave insights on the origin and degradation state of organic matter as well as changes to carbon accompanying the incubation experiment. In a multi-proxy approach, findings are further aligned with biogeochemical and sedimentological parameters. Results will reveal organic matter vulnerability to decomposition and potential greenhouse gas production in sediments after thawing, both of which are key elements in assessing future trajectories of carbon dynamics in drained lake basins.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , NonPeerReviewed
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-04-16
    Description: Permafrost carbon pools are vulnerable to a warming climate and bear the potential to alter the terrestrial carbon cycle. In the extensive drained lake basin wetlands that cover Arctic lowlands, enhanced degradation of organic-rich deposits upon permafrost thaw could lead to greenhouse gas emissions to the atmosphere. This study investigates processes and intensity of organic matter decomposition and associated potential greenhouse gas production in thawed sediment from drained lake basins on the Yukon Coastal Plain in the western Canadian Arctic. We conducted three-month low temperature (4 °C) incubation experiments, assessing the greenhouse gas production potential in the active layer, transition layer, and permafrost of sediment cores from two adjacent drained lake basins under aerobic and anaerobic conditons. The study was supplemented by comprehensive geochemical and biomarker analyses before and after the incubation experiments. Our findings revealed a higher carbon turnover of up to 2.7 % of the available organic carbon to CO2 under aerobic conditions. Carbon loss from mineral permafrost layers matched that of surface peat samples, whereas nitrogen limitation constrained short term carbon mineralization in pioneer peat layers that accumulated shortly after lake drainage. The GHG production under anaerobic conditions exhibited a high depth-dependency, with permafrost layer samples deviating from the otherwise observed high methanogenesis in active and transition layer samples within the short incubation period. High contributions of the potent greenhouse gas methane of up to 94 % enhanced the climate forcing effect of anaerobic emissions. Consequently, the determined relative climate forcing is higher under anaerobic compared to aerobic conditions in active and transition layers, suggesting that waterlogged conditions within drained lake basins are more unfavorable in the short term. While established degradation proxies C:N, δ13C and CPI did not distinctly trace significant degradation of terrestrial organic matter, we observed major shifts in lipid composition, reflected in increasing concentrations of n-alkanols and n-alkanes.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , NonPeerReviewed
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...