ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Publisher
Years
  • 1
    Publication Date: 2019-10-11
    Description: Massively parallel DNA sequencing offers many benefits, but major inhibitory cost factors include: (1) start-up (i.e., purchasing initial reagents and equipment); (2) buy-in (i.e., getting the smallest possible amount of data from a run); and (3) sample preparation. Reducing sample preparation costs is commonly addressed, but start-up and buy-in costs are rarely addressed. We present dual-indexing systems to address all three of these issues. By breaking the library construction process into universal, re-usable, combinatorial components, we reduce all costs, while increasing the number of samples and the variety of library types that can be combined within runs. We accomplish this by extending the Illumina TruSeq dual-indexing approach to 768 (384 + 384) indexed primers that produce 384 unique dual-indexes or 147,456 (384 × 384) unique combinations. We maintain eight nucleotide indexes, with many that are compatible with Illumina index sequences. We synthesized these indexing primers, purifying them with only standard desalting and placing small aliquots in replicate plates. In qPCR validation tests, 206 of 208 primers tested passed (99% success). We then created hundreds of libraries in various scenarios. Our approach reduces start-up and per-sample costs by requiring only one universal adapter that works with indexed PCR primers to uniquely identify samples. Our approach reduces buy-in costs because: (1) relatively few oligonucleotides are needed to produce a large number of indexed libraries; and (2) the large number of possible primers allows researchers to use unique primer sets for different projects, which facilitates pooling of samples during sequencing. Our libraries make use of standard Illumina sequencing primers and index sequence length and are demultiplexed with standard Illumina software, thereby minimizing customization headaches. In subsequent Adapterama papers, we use these same primers with different adapter stubs to construct amplicon and restriction-site associated DNA libraries, but their use can be expanded to any type of library sequenced on Illumina platforms.
    Electronic ISSN: 2167-8359
    Topics: Biology , Medicine
    Published by PeerJ
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-10-11
    Description: Next-generation sequencing (NGS) of amplicons is used in a wide variety of contexts. In many cases, NGS amplicon sequencing remains overly expensive and inflexible, with library preparation strategies relying upon the fusion of locus-specific primers to full-length adapter sequences with a single identifying sequence or ligating adapters onto PCR products. In Adapterama I, we presented universal stubs and primers to produce thousands of unique index combinations and a modifiable system for incorporating them into Illumina libraries. Here, we describe multiple ways to use the Adapterama system and other approaches for amplicon sequencing on Illumina instruments. In the variant we use most frequently for large-scale projects, we fuse partial adapter sequences (TruSeq or Nextera) onto the 5′ end of locus-specific PCR primers with variable-length tag sequences between the adapter and locus-specific sequences. These fusion primers can be used combinatorially to amplify samples within a 96-well plate (8 forward primers + 12 reverse primers yield 8 × 12 = 96 combinations), and the resulting amplicons can be pooled. The initial PCR products then serve as template for a second round of PCR with dual-indexed iTru or iNext primers (also used combinatorially) to make full-length libraries. The resulting quadruple-indexed amplicons have diversity at most base positions and can be pooled with any standard Illumina library for sequencing. The number of sequencing reads from the amplicon pools can be adjusted, facilitating deep sequencing when required or reducing sequencing costs per sample to an economically trivial amount when deep coverage is not needed. We demonstrate the utility and versatility of our approaches with results from six projects using different implementations of our protocols. Thus, we show that these methods facilitate amplicon library construction for Illumina instruments at reduced cost with increased flexibility. A simple web page to design fusion primers compatible with iTru primers is available at: http://baddna.uga.edu/tools-taggi.html. A fast and easy to use program to demultiplex amplicon pools with internal indexes is available at: https://github.com/lefeverde/Mr_Demuxy.
    Electronic ISSN: 2167-8359
    Topics: Biology , Medicine
    Published by PeerJ
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-10-11
    Description: Molecular ecologists frequently use genome reduction strategies that rely upon restriction enzyme digestion of genomic DNA to sample consistent portions of the genome from many individuals (e.g., RADseq, GBS). However, researchers often find the existing methods expensive to initiate and/or difficult to implement consistently, especially because it is difficult to multiplex sufficient numbers of samples to fill entire sequencing lanes. Here, we introduce a low-cost and highly robust approach for the construction of dual-digest RADseq libraries that build on adapters and primers designed in Adapterama I. Major features of our method include: (1) minimizing the number of processing steps; (2) focusing on a single strand of sample DNA for library construction, allowing the use of a non-phosphorylated adapter on one end; (3) ligating adapters in the presence of active restriction enzymes, thereby reducing chimeras; (4) including an optional third restriction enzyme to cut apart adapter-dimers formed by the phosphorylated adapter, thus increasing the efficiency of adapter ligation to sample DNA, which is particularly effective when only low quantity/quality DNA samples are available; (5) interchangeable adapter designs; (6) incorporating variable-length internal indexes within the adapters to increase the scope of sample indexing, facilitate pooling, and increase sequence diversity; (7) maintaining compatibility with universal dual-indexed primers and thus, Illumina sequencing reagents and libraries; and, (8) easy modification for the identification of PCR duplicates. We present eight adapter designs that work with 72 restriction enzyme combinations. We demonstrate the efficiency of our approach by comparing it with existing methods, and we validate its utility through the discovery of many variable loci in a variety of non-model organisms. Our 2RAD/3RAD method is easy to perform, has low startup costs, has increased utility with low-concentration input DNA, and produces libraries that can be highly-multiplexed and pooled with other Illumina libraries.
    Electronic ISSN: 2167-8359
    Topics: Biology , Medicine
    Published by PeerJ
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...