ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
  • 2
    Publication Date: 2020-08-17
    Description: Remote sensing of atmospheric state variables typically relies on the inverse solution of the radiative transfer equation. An adequately characterized retrieval provides information on the uncertainties of the estimated state variables as well as on how any constraint or a priori assumption affects the estimate. Reported characterization data should be intercomparable between different instruments, empirically validatable, grid-independent, usable without detailed knowledge of the instrument or retrieval technique, traceable and still have reasonable data volume. The latter may force one to work with representative rather than individual characterization data. Many errors derive from approximations and simplifications used in real-world retrieval schemes, which are reviewed in this paper, along with related error estimation schemes. The main sources of uncertainty are measurement noise, calibration errors, simplifications and idealizations in the radiative transfer model and retrieval scheme, auxiliary data errors, and uncertainties in atmospheric or instrumental parameters. Some of these errors affect the result in a random way, while others chiefly cause a bias or are of mixed character. Beyond this, it is of utmost importance to know the influence of any constraint and prior information on the solution. While different instruments or retrieval schemes may require different error estimation schemes, we provide a list of recommendations which should help to unify retrieval error reporting.
    Print ISSN: 1867-1381
    Electronic ISSN: 1867-8548
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-02-18
    Description: We present an empirical model for nitric oxide (NO) in the mesosphere (≈60–90 km) derived from SCIAMACHY (SCanning Imaging Absorption spectroMeter for Atmospheric CHartoghraphY) limb scan data. This work complements and extends the NOEM (Nitric Oxide Empirical Model; Marsh et al., 2004) and SANOMA (SMR Acquired Nitric Oxide Model Atmosphere; Kiviranta et al., 2018) empirical models in the lower thermosphere. The regression ansatz builds on the heritage of studies by Hendrickx et al. (2017) and the superposed epoch analysis by Sinnhuber et al. (2016) which estimate NO production from particle precipitation. Our model relates the daily (longitudinally) averaged NO number densities from SCIAMACHY (Bender et al., 2017b, a) as a function of geomagnetic latitude to the solar Lyman-α and the geomagnetic AE (auroral electrojet) indices. We use a non-linear regression model, incorporating a finite and seasonally varying lifetime for the geomagnetically induced NO. We estimate the parameters by finding the maximum posterior probability and calculate the parameter uncertainties using Markov chain Monte Carlo sampling. In addition to providing an estimate of the NO content in the mesosphere, the regression coefficients indicate regions where certain processes dominate.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-03-14
    Description: We compare simulations from three high-top (with upper lid above 120 km) and five medium-top (with upper lid around 80 km) atmospheric models with observations of odd nitrogen (NOx  =  NO + NO2), temperature, and carbon monoxide from seven satellite instruments (ACE-FTS on SciSat, GOMOS, MIPAS, and SCIAMACHY on Envisat, MLS on Aura, SABER on TIMED, and SMR on Odin) during the Northern Hemisphere (NH) polar winter 2008/2009. The models included in the comparison are the 3-D chemistry transport model 3dCTM, the ECHAM5/MESSy Atmospheric Chemistry (EMAC) model, FinROSE, the Hamburg Model of the Neutral and Ionized Atmosphere (HAMMONIA), the Karlsruhe Simulation Model of the Middle Atmosphere (KASIMA), the modelling tools for SOlar Climate Ozone Links studies (SOCOL and CAO-SOCOL), and the Whole Atmosphere Community Climate Model (WACCM4). The comparison focuses on the energetic particle precipitation (EPP) indirect effect, that is, the polar winter descent of NOx largely produced by EPP in the mesosphere and lower thermosphere. A particular emphasis is given to the impact of the sudden stratospheric warming (SSW) in January 2009 and the subsequent elevated stratopause (ES) event associated with enhanced descent of mesospheric air. The chemistry climate model simulations have been nudged toward reanalysis data in the troposphere and stratosphere while being unconstrained above. An odd nitrogen upper boundary condition obtained from MIPAS observations has further been applied to medium-top models. Most models provide a good representation of the mesospheric tracer descent in general, and the EPP indirect effect in particular, during the unperturbed (pre-SSW) period of the NH winter 2008/2009. The observed NOx descent into the lower mesosphere and stratosphere is generally reproduced within 20 %. Larger discrepancies of a few model simulations could be traced back either to the impact of the models' gravity wave drag scheme on the polar wintertime meridional circulation or to a combination of prescribed NOx mixing ratio at the uppermost model layer and low vertical resolution. In March–April, after the ES event, however, modelled mesospheric and stratospheric NOx distributions deviate significantly from the observations. The too-fast and early downward propagation of the NOx tongue, encountered in most simulations, coincides with a temperature high bias in the lower mesosphere (0.2–0.05 hPa), likely caused by an overestimation of descent velocities. In contrast, upper-mesospheric temperatures (at 0.05–0.001 hPa) are generally underestimated by the high-top models after the onset of the ES event, being indicative for too-slow descent and hence too-low NOx fluxes. As a consequence, the magnitude of the simulated NOx tongue is generally underestimated by these models. Descending NOx amounts simulated with medium-top models are on average closer to the observations but show a large spread of up to several hundred percent. This is primarily attributed to the different vertical model domains in which the NOx upper boundary condition is applied. In general, the intercomparison demonstrates the ability of state-of-the-art atmospheric models to reproduce the EPP indirect effect in dynamically and geomagnetically quiescent NH winter conditions. The encountered differences between observed and simulated NOx, CO, and temperature distributions during the perturbed phase of the 2009 NH winter, however, emphasize the need for model improvements in the dynamical representation of elevated stratopause events in order to allow for a better description of the EPP indirect effect under these particular conditions.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-01-17
    Description: We present a retrieval algorithm for nitric oxide (NO) number densities from measurements from the SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY, on Envisat) nominal limb mode (0–91 km). The NO number densities are derived from atmospheric emissions in the gamma bands in the range 230–300 nm, measured by the SCIAMACHY ultra-violet (UV) channel 1. The retrieval is adapted from the mesosphere and lower thermosphere mode (MLT, 50–150 km) NO retrieval (Bender et al., 2013), including the same 3-D ray tracing, 2-D retrieval grid, and regularisations with respect to altitude and latitude.Since the nominal mode limb scans extend only to about 91 km, we use NO densities in the lower thermosphere (above 92 km), derived from empirical models, as a priori input. The priors are the Nitric Oxide Empirical Model (NOEM; Marsh et al., 2004) and a regression model derived from the MLT NO data comparison (Bender et al., 2015). Our algorithm yields plausible NO number densities from 60 to 85 km from the SCIAMACHY nominal limb mode scans. Using a priori input substantially reduces the incorrect attribution of NO from the lower thermosphere, where no direct limb measurements are available. The vertical resolution lies between 5 and 10 km in the altitude range 65–80 km.Analysing all SCIAMACHY nominal limb scans provides almost 10 years (from August 2002 to April 2012) of daily NO measurements in this altitude range. This provides a unique data record of NO in the upper atmosphere and is invaluable for constraining NO in the mesosphere, in particular for testing and validating chemistry climate models during this period.
    Print ISSN: 1867-1381
    Electronic ISSN: 1867-8548
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2018-01-23
    Description: We present the retrieved volume emission rates (VERs) from the airglow of both the daytime and twilight O2(1Σ) band and O2(1Δ) band emissions in the mesosphere and lower thermosphere (MLT). The SCanning Imaging Absorption SpectroMeter for Atmospheric CHartographY (SCIAMACHY) onboard the European Space Agency Envisat satellite observes upwelling radiances in limb-viewing geometry during its special MLT mode over the range 50–150 km. In this study we use the limb observations in the visible (595–811 nm) and near-infrared (1200–1360 nm) bands. We have investigated the daily mean latitudinal distributions and the time series of the retrieved VER in the altitude range from 53 to 149 km. The maximal observed VERs of O2(1Δ) during daytime are typically 1 to 2 orders of magnitude larger than those of O2(1Σ). The latter peaks at around 90 km, whereas the O2(1Δ) emissivity decreases with altitude, with the largest values at the lower edge of the observations (about 53 km). The VER values in the upper mesosphere (above 80 km) are found to depend on the position of the sun, with pronounced high values occurring during summer for O2(1Δ). O2(1Σ) emissions show additional high values at polar latitudes during winter and spring. These additional high values are presumably related to the downwelling of atomic oxygen after large sudden stratospheric warmings (SSWs). Accurate measurements of the O2(1Σ) and O2(1Δ) airglow, provided that the mechanism of their production is understood, yield valuable information about both the chemistry and dynamics in the MLT. For example, they can be used to infer the amounts and distribution of ozone, solar heating rates, and temperature in the MLT.
    Print ISSN: 1867-1381
    Electronic ISSN: 1867-8548
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-04-03
    Description: The impact of Euro 4 compression ignition engines over the air quality in Europe has been analyzed in this work by comparing them with Euro 6d emissions regulation. The Euro 6d diesel engine has been chosen as the preferred replacement according to its advantages in global warming potential (GWP) emissions, like methane hydrocarbons (MHC) and CO2, with respect to Euro 6d petrol-based powertrains. The motivation for this study is that the effects of the emissions reduction policies, as the implementation of the regulation Euro 6d, are necessarily limited due to the great number of passenger cars still in circulation that were homologated under Euro 4 or older standards. To address the impact of the old vehicle pool, a Worldwide harmonized Light-vehicles Test Cycle (WLTC) has been used to analyze the performance and pollutant emissions of a Euro 4 diesel engine in altitude conditions. This driving cycle and engine are considered as a baseline for the subsequent discussion, where the altitude plays a key role because of the European geography. It forces passenger cars to drive over sea level during a significant number of trips. Thus, an analysis of how significant would be the impact of energy policies promoting the substitution of the pre-Euro 5 diesel fleet (〉10 years old) by modern Euro 6d engines in the short term on the pollutants and GWP emissions reduction is presented.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2016-12-09
    Description: We compare simulations from three high-top (with upper lid above 120 km) and five medium-top (with upper lid around 80km) atmospheric models with observations of odd nitrogen (NOx = NO + NO2), temperature, and carbon monoxide from seven satellite instruments (ACE-FTS on SciSat, GOMOS, MIPAS, and SCIAMACHY on Envisat, MLS on Aura, SABER on TIMED, and SMR on Odin) during the Northern Hemisphere (NH) polar winter 2008/2009. The models included in the comparison are the 3d Chemistry Transport model (3dCTM), the ECHAM5/MESSy Atmospheric Chemistry (EMAC) model, FinROSE, the Hamburg Model of the Neutral and Ionized Atmosphere (HAMMONIA), the Karlsruhe Simulation Model of the Middle Atmosphere (KASIMA), the modeling tools for SOlar Climate Ozone Links studies (SOCOL and CAO-SOCOL), and the Whole Atmosphere Community Climate Model (WACCM4). The comparison focuses on the energetic particle precipitation (EPP) indirect effect, that is, the polar winter descent of NOx largely produced by EPP in the mesosphere and lower thermosphere. A particular emphasis is given to the impact of the sudden stratospheric warming (SSW) in January 2009 and the subsequent elevated stratopause (ES) event associated with enhanced descent of mesospheric air. The chemistry climate model simulations have been nudged toward reanalysis data in the troposphere and stratosphere while being unconstrained above. An odd nitrogen upper boundary condition obtained from MIPAS observations has further been applied to medium-top models. Most models provide a good representation of the mesospheric tracer descent in general, and the EPP indirect effect in particular, during the unperturbed (pre-SSW) period of the NH winter 2008/2009. The observed NOx descent into the lower mesosphere and stratosphere is generally reproduced within 20 %. Larger discrepancies of a few model simulations could be traced back either to the impact of the models' gravity wave drag scheme on the polar wintertime meridional circulation or to a combination of prescribed NOx mixing ratio at the uppermost model layer and low vertical resolution. In March–April, after the ES event, however, modelled mesospheric and stratospheric NOx distributions deviate significantly from the observations. The too fast and early downward propagation of the NOx tongue, encountered in most simulations, coincides with a temperature high bias in the lower mesosphere (0.2–0.05 hPa) being likely caused by an overestimation of descent velocities. On the other hand, upper mesospheric temperatures (at 0.05–0.001 hPa) are generally underestimated by the high-top models after the onset of the ES event, being indicative for too slow descent and hence too low NOx fluxes. As a consequence, the magnitude of the simulated NOx tongue is generally underestimated by these models. Descending NOx amounts simulated with medium-top models are on average closer to the observations but show a large spread of up to several hundred percent. This is primarily attributed to the different vertical model domains in which the NOx upper boundary condition is applied. In general, the intercomparison demonstrates the ability of state-of-the-art atmospheric models to reproduce the EPP indirect effect in dynamically and geomagnetically quiescent NH winter conditions. The encountered differences between observed and simulated NOx, CO, and temperature distributions during the perturbed phase of the 2009 NH winter, however, emphasize the need for model improvements in the dynamical representation of elevated stratopause events in order to allow for a better description of the EPP indirect effect under these particular conditions.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-08-14
    Description: We present the retrieved volume emission rates (VER) from the airglow of both the daytime and twilight O2(1Σ) band and O2(1Δ) band emissions in the mesosphere/lower thermosphere (MLT). The SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY) on-board the European Space Agency Envisat satellite observes upwelling radiances in limb viewing geometry during its special MLT mode over the range 50 to 150 km. In this study we use the limb observations in the visible (595–811 nm) and near infrared (1200–1360 nm) bands. We have investigated the daily mean latitudinal distributions and the time series of the retrieved VER in the altitude range from 53 to 149 km. The maximal observed VER of O2(1Δ) during daytime are typically 1 to 2 orders of magnitude larger than those of O2(1Σ). The latter peaks at around 90 km, whereas the O2(1Δ) emissivity decreases with altitude, with the largest values at the lower edge of the observations (about 53 km). The VER values in the upper mesosphere (above 80 km) are found to depend on the position of the sun, with pronounced high values occurring during summer for O2(1Δ). O2(1Σ) shows secondary maxima during winter and spring, which are related to the downwelling of atomic oxygen after large sudden stratospheric warmings (SSW). Observations of O2(1Δ) and O2(1Σ) airglow provide valuable information about both the chemistry and dynamics in the MLT and can be used to infer the amounts and distribution of ozone, solar heating rates and temperature in the MLT.
    Electronic ISSN: 1867-8610
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2018-10-22
    Description: We present an empirical model for nitric oxide (NO) in the mesosphere (≈60–90km) derived from SCIAMACHY limb scan data. This work complements and extends the NOEM (Nitric Oxide Empirical Model, Marsh et al. (2004)) and SANOMA (SMR Acquired Nitric Oxide Model Atmosphere, Kiviranta et al. (2018)) empirical models in the lower thermosphere. The regression ansatz builds on the heritage of studies by Hendrickx et al. (2017) and the super-posed epoch analysis by Sinnhuber et al. (2016) which estimate NO production from particle precipitation. Our model relates the daily (longitudinally) averaged NO number densities from SCIAMACHY (Bender et al., 2017b, a) as a function of geomagnetic latitude to the solar Lyman-α and the geomagnetic AE indices. We use a non-linear regression model incorporating a finite and seasonally varying lifetime for the geomagnetically induced NO. We estimate the parameters by finding the maximum posterior probability and calculate the parameter uncertainties using Markov-Chain Monte-Carlo sampling. In addition to providing an estimate of the NO content in the mesosphere, the regression coefficients indicate regions where certain processes dominate.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...