ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Keywords
Years
  • 1
    Publication Date: 2024-02-28
    Description: The dataset shows the orginal data based on which grazing rates of micro- and nanozooplankton and the growth rates of their prey, in austral autumn (April) close to the Antarctic Peninsula in the SO, were calculated in Böckmann et al. (2024). The data was measured by dilution experiments. Besides the, in such experiments classically investigated chlorophyll a, particulate organic carbon, particulate organic nitrogen, abundances of picoplankton and nanoplankton as well as bacterial abundances were measured at three stations in the Bransfield Strait, Drake Passage and Scotia Sea. Samples were taken during PS112 from a depth of 25 meters, using a polyethylene line connected to an ALMATEC membrane pump, by careful (laminar flow, 3-6 liters per minute, bubble free bottle filling) and trace metal clean techniques, successfully used since 2014. The data was collected to investigate the importance that nano- and microzooplankton grazers have for the carbon cycle in the Southern Ocean.
    Keywords: Ammonium; ANT-XXXIII/3; Bacteria, high DNA; Bacteria, low DNA; Carbon, organic, particulate; Carbon, organic, particulate fractionated; Chlorophyll a; Continuous flow autoanalyzer, Alliance Instruments, Evolution III; Date/time end, experiment; Date/time start, experiment; Diatoms; dilution experiment; Dinoflagellates; Drake Passage; Elemental analyzer, HEKAtech, Euro Vector CHNS-O; Event label; Experimental treatment; Flow cytometer, BD Biosciences, BD Accuri C6; grazing rates; growth rates; In situ pump; Inverted light microscopy, Zeiss, Axio Observer D1; ISP; Laboratory experiment; Laboratory fluorometer, Turner, Trilogy; microzooplankton; Nanoeukaryotes; Nanoflagellates; nanozooplankton; Nitrate; Nitrite; Nitrogen, organic, particulate; Nitrogen, organic, particulate fractionated; Phosphate; Picoeukaryotes, fractionated; Polarstern; Population Shift and Ecosystem Response – Krill vs. Salps; POSER; PS112; PS112_106-1; PS112_26-1; PS112_61-3; Replicate; Sample code/label; Scotia Sea; Silicate; Southern Ocean; Type of study; WAP
    Type: Dataset
    Format: text/tab-separated-values, 953 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-02-15
    Description: Dataset 1 shows the dissolved iron (dFe) values of an iron release experiment performed in the Southern Ocean at the tip of the Western Antarctic Peninsula. Krill and salp fecal pellets (FP) were incubated in filtered seawater (FSW) and seawater with phytoplankton (SWP). After 48 hours of incubation the dFe concentrations were measured. Numbers marked in red have been recognized as outliers (due to contamination or analytic error) and have been excluded from statistical analysis. Dataset 2 shows the uptake of iron into Southern Ocean phytoplankton cells from the pre-incubated water. The uptake was measured using the radiotracer 55Fe into two size classes of plankton (0.2-2µm and 〉2µm). Total dFe uptake is the sum of the two size classes. Lines marked in orange have been excluded from statistical analysis because respective dissolved iron concentrations were not reliable. The data for both datasets was collected between 04/11/2018 and 04/14/2018 (campaign PS112) at the Western Antarctic Peninsula (60° 44.455 S 54° 30.477 W) from a depth of 25 m. The data was collected in order to compare the bioavailability of iron from salp and krill FP to a Southern Ocean plankton community. All sampling steps were performed in trace metal clean ways.
    Keywords: fecal pellet; iron release; iron uptake; krill; Salp; Southern Ocean
    Type: Dataset
    Format: application/zip, 2 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-02-15
    Description: This table shows the dissolved iron concentrations of the initial water prior to the experiment (Initial) and after the incubation with salp and krill fecal pellets in filtered seawater (FSW) and seawater containing phytoplankton (SWP) as well as respective controls. Numbers marked in red have been recognized as outliers (due to contamination or analytic error) and have been excluded from statistical analysis.
    Keywords: ANT-XXXIII/3; DEPTH, water; fecal pellet; In situ pump; Iron, dissolved; iron release; iron uptake; ISP; krill; Polarstern; PS112; PS112_61-3; Salp; Scotia Sea; Southern Ocean; Treatment
    Type: Dataset
    Format: text/tab-separated-values, 44 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-02-15
    Keywords: ANT-XXXIII/3; Comment; fecal pellet; Filter, pore size; Incubation duration; In situ pump; Iron, dissolved; Iron, dissolved, standard deviation; iron release; iron uptake; Iron uptake; ISP; krill; Phytoplankton iron uptake; Phytoplankton iron uptake, standard deviation; Polarstern; PS112; PS112_61-3; Quotient; Replicate; Salp; Scotia Sea; Southern Ocean; Treatment
    Type: Dataset
    Format: text/tab-separated-values, 402 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
  • 6
    Publication Date: 2019-08-19
    Description: The Southern Ocean is considered to be a major player in the climate system of our planet while being extremely sensitive to climate change itself. The pelagic Southern Ocean is limited by the bioavailability of iron. Zooplankton has a large impact on the remineralization of iron in the water column and thereby an important influence on primary production. Indications exist that due to increasing water temperatures in the course of climate change, vast areas of the Southern Ocean might shift from a krill to a salp-dominated community. Since the degree of iron remineralization is dependent on the taxonomic group of zooplankton, we investigated the different impacts that salp and krill fecal pellets have on iron chemistry and its bioavailability to Southern Ocean phytoplankton, during a Polarstern cruise in spring 2018. We incubated salp and krill fecal pellet material in Antarctic low-iron water without phytoplankton. In a second step, a concentrated natural phytoplankton community was added into the thusly preconditioned water and for the first time ever the iron uptake into the living cells, in respect to the fecal pellet type that acted as an iron source, was determined. Our results indicate that iron released from salp fecal pellets into the seawater was significantly more bioavailable to phytoplankton than iron from krill fecal pellets, since phytoplankton picked up 0.28 nmol Fe L-1 d-1 from water treated with salp fecal pellets and 0.16 nmol Fe L-1 d-1 from water treated with krill fecal pellets. These results demonstrate that salps might actually play a role in stimulating phytoplankton growth in the Southern Ocean, thusly influencing the biological carbon pump.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    In:  EPIC3Science goes Public, Gaststätte Rüssel - Bremerhaven, 2019-10-18-2019-10-18
    Publication Date: 2019-07-23
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-08-19
    Description: The Southern Ocean is considered to be a major player in the climate system of our planet while being extremely sensitive to climate change itself. The pelagic Southern Ocean is limited by the bioavailability of iron. Zooplankton has a large impact on the remineralization of iron in the water column and thereby an important influence on primary production. Indications exist that due to increasing water temperatures in the course of climate change, vast areas of the Southern Ocean might shift from a krill to a salp-dominated community. Since the degree of iron remineralization is dependent on the taxonomic group of zooplankton, we investigated the different impacts that salp and krill fecal pellets have on iron chemistry and its bioavailability to Southern Ocean phytoplankton, during a Polarstern cruise in spring 2018. We incubated salp and krill fecal pellet material in Antarctic low-iron water without phytoplankton. In a second step, a concentrated natural phytoplankton community was added into the thusly preconditioned water and for the first time ever the iron uptake into the living cells, in respect to the fecal pellet type that acted as an iron source, was determined. Our results indicate that iron released from salp fecal pellets into the seawater was significantly more bioavailable to phytoplankton than iron from krill fecal pellets, since phytoplankton picked up 0.28 nM Fe d-1 from water treated with salp fecal pellets and 0.16 nM Fe d-1 from water treated with krill fecal pellets. These results demonstrate that salps might actually play a role in stimulating phytoplankton growth in the Southern Ocean, thusly influencing the biological carbon pump.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2021-11-16
    Description: Over the last decades, it has been reported that the habitat of the Southern Ocean (SO) key species Antarctic krill (Euphausia superba) has contracted to high latitudes, putatively due to reduced winter sea ice coverage, while salps as Salpa thompsoni have extended their dispersal to the former krill habitats. To date, the potential implications of this population shift on the biogeochemical cycling of the limiting micronutrient iron (Fe) and its bioavailability to SO phytoplankton has never been tested. Based on uptake of fecal pellet (FP)- released Fe by SO phytoplankton, this study highlights how efficiently krill and salps recycle Fe. To test this, we collected FPs of natural populations of salps and krill, added them to the same SO phytoplankton community, andmeasured the community’s Fe uptake rates. Our results reveal that both FP additions yielded similar dissolved iron concentrations in the seawater. Per FP carbon added to the seawater, 4.8 ± 1.5 times more Fe was taken up by the same phytoplankton community from salp FP than from krill FP, suggesting that salp FP increased the Fe bioavailability, possibly through the release of ligands. With respect to the ongoing shift from krill to salps, the potential for carbon fixation of the Fe-limited SO could be strengthened in the future, representing a negative feedback to climate change.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2023-05-10
    Description: Over the last decades, it has been reported that the habitat of the Southern Ocean (SO) key species Antarctic krill (Euphausia superba) has contracted to high latitudes, putatively due to reduced winter sea ice coverage, while salps as Salpa thompsoni have extended their dispersal to the former krill habitats. To date, the potential implications of this population shift on the biogeochemical cycling of the limiting micronutrient iron (Fe) and its bioavailability to SO phytoplankton has never been tested. Based on uptake of fecal pellet (FP)- released Fe by SO phytoplankton, this study highlights how efficiently krill and salps recycle Fe. To test this, we collected FPs of natural populations of salps and krill, added them to the same SO phytoplankton community, andmeasured the community’s Fe uptake rates. Our results reveal that both FP additions yielded similar dissolved iron concentrations in the seawater. Per FP carbon added to the seawater, 4.8 ± 1.5 times more Fe was taken up by the same phytoplankton community from salp FP than from krill FP, suggesting that salp FP increased the Fe bioavailability, possibly through the release of ligands. With respect to the ongoing shift from krill to salps, the potential for carbon fixation of the Fe-limited SO could be strengthened in the future, representing a negative feedback to climate change.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...