ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Keywords
  • 1
    Publication Date: 2023-10-28
    Description: NO was measured in the oxygen minimum zone (OMZ) of the eastern tropical South Pacific Ocean (ETSP) off Peru during the R/V Meteor cruise M93 in February/March 2013. NO was measured at nine stations by taking discrete water samples at selected water depths between the surface and 327 m with a pump-CTD system. NO concentrations were determined with a chemiluminescence NO analyser connected to a stripping unit. For details see Lutterbeck et al., Deep-Sea Res. II, 156, 148-154, 2018.
    Keywords: Climate - Biogeochemistry Interactions in the Tropical Ocean; Date/Time of event; Depth, bottom/max; DEPTH, water; Error, relative; Event label; LATITUDE; LONGITUDE; M93; M93_347-3; M93_376-1; M93_378-1; M93_380-2; M93_391-10; M93_391-4; M93_399-4; M93_411-6; M93_441-2; M93_463-2; Meteor (1986); Nitric oxide; Nitric oxide, standard deviation; PCTD-RO; Pressure, water; PumpCTD/Rosette; Salinity; Sample code/label; SFB754; South Pacific Ocean; Station label; Temperature, water
    Type: Dataset
    Format: text/tab-separated-values, 1016 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-10-28
    Keywords: Climate - Biogeochemistry Interactions in the Tropical Ocean; CTD/Rosette; CTD 101; CTD 102; CTD 105; CTD 107; CTD 108; CTD 109; CTD 110; CTD 116; CTD 117; CTD 123; CTD 124; CTD 125; CTD 126; CTD 127; CTD 128; CTD 129; CTD 13; CTD 132; CTD 133; CTD 135; CTD 136; CTD 138; CTD 139; CTD 14; CTD 143; CTD 144; CTD 151; CTD 152; CTD 23; CTD 24; CTD 29; CTD 30; CTD 34; CTD 35; CTD 36; CTD 37; CTD 4; CTD 41; CTD 5; CTD 51; CTD 52; CTD 56; CTD 57; CTD 61; CTD 62; CTD 66; CTD 67; CTD 71; CTD 72; CTD-RO; DATE/TIME; DEPTH, water; Event label; Identification; LATITUDE; LONGITUDE; M90; M90_1555-1; M90_1555-2; M90_1563-1; M90_1563-2; M90_1572-1; M90_1572-2; M90_1577-1; M90_1577-2; M90_1581-1; M90_1581-2; M90_1582-1; M90_1583-1; M90_1586-1; M90_1596-1; M90_1596-2; M90_1600-1; M90_1600-2; M90_1604-1; M90_1604-2; M90_1608-1; M90_1608-2; M90_1612-1; M90_1612-2; M90_1639-1; M90_1639-2; M90_1642-1; M90_1644-1; M90_1645-1; M90_1646-1; M90_1646-2; M90_1652-1; M90_1652-2; M90_1657-1; M90_1658-1; M90_1659-1; M90_1659-2; M90_1660-1; M90_1661-1; M90_1661-2; M90_1664-1; M90_1664-2; M90_1666-1; M90_1666-2; M90_1668-1; M90_1668-2; M90_1672-1; M90_1673-1; M90_1679-1; M90_1679-2; Meteor (1986); Nitrous oxide, dissolved; Sample code/label; SFB754
    Type: Dataset
    Format: text/tab-separated-values, 4752 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    PANGAEA
    In:  GEOMAR - Helmholtz Centre for Ocean Research Kiel
    Publication Date: 2023-10-28
    Keywords: Bottle number; Climate - Biogeochemistry Interactions in the Tropical Ocean; CTD/Rosette; CTD001; CTD002; CTD003; CTD004; CTD005; CTD006; CTD008; CTD009; CTD010; CTD011; CTD012; CTD013; CTD014; CTD015; CTD016; CTD017; CTD018; CTD019; CTD020; CTD021; CTD022; CTD023; CTD024; CTD025; CTD026; CTD027; CTD028; CTD029; CTD030; CTD031; CTD032; CTD033; CTD034; CTD035; CTD036; CTD037; CTD038; CTD039; CTD040; CTD041; CTD042; CTD043; CTD044; CTD045; CTD046; CTD047; CTD048; CTD049; CTD050; CTD051; CTD052; CTD053; CTD054; CTD055; CTD056; CTD057; CTD058; CTD059; CTD060; CTD061; CTD062; CTD063-64; CTD065; CTD066; CTD067; CTD068; CTD069; CTD070; CTD071; CTD072; CTD073; CTD074; CTD075; CTD076; CTD077; CTD078; CTD079; CTD080; CTD081; CTD082; CTD083; CTD086; CTD087; CTD088; CTD089; CTD090; CTD091; CTD092; CTD093; CTD094; CTD095; CTD096; CTD097; CTD098; CTD101; CTD102; CTD103; CTD104; CTD105; CTD107; CTD109; CTD110; CTD111; CTD112; CTD113; CTD114; CTD115; CTD116; CTD117; CTD118; CTD119; CTD120; CTD121; CTD122; CTD123; CTD124; CTD125; CTD131; CTD132; CTD133; CTD134; CTD136; CTD137; CTD138; CTD139; CTD140; CTD141; CTD142; CTD143; CTD144; CTD145; CTD146; CTD147; CTD148; CTD149; CTD150; CTD151; CTD153; CTD154; CTD155; CTD156; CTD157; CTD158; CTD159; CTD160; CTD-RO; DATE/TIME; DEPTH, water; Event label; LATITUDE; LONGITUDE; M93; M93_290-1; M93_291-1; M93_292-1; M93_293-1; M93_295-1; M93_295-3; M93_298-1; M93_299-1; M93_300-1; M93_301-1; M93_302-1; M93_303-2; M93_304-1; M93_305-1; M93_306-1; M93_307-1; M93_308-1; M93_309-1; M93_310-1; M93_311-1; M93_312-1; M93_313-1; M93_314-1; M93_315-1; M93_316-1; M93_317-1; M93_318-2; M93_318-4; M93_318-6; M93_319-1; M93_320-1; M93_321-1; M93_322-1; M93_323-1; M93_324-1; M93_325-1; M93_326-1; M93_327-1; M93_328-1; M93_329-1; M93_330-1; M93_331-1; M93_332-1; M93_334-1; M93_335-1; M93_336-1; M93_337-1; M93_338-1; M93_339-1; M93_340-1; M93_341-1; M93_342-1; M93_343-1; M93_344-1; M93_345-1; M93_346-1; M93_347-2; M93_347-4; M93_347-6; M93_349-3; M93_350-1; M93_351-1; M93_354-1; M93_356-1; M93_357-1; M93_358-1; M93_359-2; M93_360-1; M93_361-2; M93_363-1; M93_364-1; M93_365-1; M93_366-1; M93_367-1; M93_368-1; M93_368-3; M93_369-1; M93_369-4; M93_376-2; M93_378-2; M93_380-3; M93_384-1; M93_384-2; M93_385-1; M93_386-1; M93_387-1; M93_388-1; M93_389-1; M93_390-1; M93_391-2; M93_391-5; M93_392-1; M93_393-1; M93_394-1; M93_399-5; M93_399-7; M93_404-1; M93_405-1; M93_406-1; M93_408-1; M93_411-2; M93_411-7; M93_411-9; M93_412-1; M93_413-1; M93_414-1; M93_415-1; M93_416-1; M93_417-1; M93_418-1; M93_419-1; M93_420-1; M93_421-1; M93_422-1; M93_423-1; M93_424-1; M93_425-1; M93_433-1; M93_434-1; M93_435-1; M93_436-1; M93_439-1; M93_441-3; M93_441-4; M93_441-5; M93_447-1; M93_448-1; M93_448-5; M93_456-1; M93_457-1; M93_458-1; M93_459-1; M93_460-1; M93_460-2; M93_461-1; M93_462-1; M93_463-1; M93_463-7; M93_465-1; M93_466-1; M93_467-1; M93_468-1; M93_469-1; M93_471-1; M93_471-2; Meteor (1986); Nitrous oxide; Oxygen; Salinity; SFB754; South Pacific Ocean; Temperature, water
    Type: Dataset
    Format: text/tab-separated-values, 10354 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-08-12
    Description: Upward transport and/or mixing of trace gas-enriched subsurface waters fosters the exchange of nitrous oxide (N2O) and methane (CH4) with the atmosphere in the Eastern-South Atlantic (ESA). To date, it is, however, unclear whether this source is maintained by local production or advection of trace-gas enriched water masses. So, the meridional and zonal variability of N2O and CH4 in the ESA were investigated to constrain the contributions of the major regional water masses to the overall budget of N2O and CH4. The fieldwork took place during the cruises M99 (July 31st - August 23rd, 2013) and M120 (October 17th - November 18th, 2015) onboard the R/V METEOR, which encompassed close-coastal and open ocean regions off Angola and Namibia. To investigate the regional concentration gradients of N2O and CH4 and corresponding sea-air fluxes, seven hydrographic sections (six zonal transects and one alongshore transect) were conducted between ~10°S and 26°S. Concentrations of dissolved N2O and CH4 in surface waters were continuously measured by using the Mobile Equilibrator Sensor System. To evaluate, the oceanic-atmospheric trace gas exchange, the atmospheric N2O and CH4 in ambient air were measured at several sporadic locations, with an inlet installed at 35 m height. The data were quality controlled by comparing with the data generated by NOAA in the nearest atmospheric sampling station (23.58° S, 15.03°E, Station NMB (Gobabeb, Namibia)). Also, to better understand the underlying patterns of the trace gas in the ESA, the vertical profiles were investigated by measuring discrete samples of N2O using the dynamic headspace method on M99. N2O and CH4 concentrations were also measured using a purge and trap system during M120 expedition.
    Keywords: Eastern Boundary Upwelling Syetms; Enhancing Prediction of Tropical Atlantic Climate and its Impact; Methane; nitrous oxide; PREFACE; SACUS/SACUS-II; Southwest African Coastal Upwelling System and Benguela Niños; trace gases
    Type: Dataset
    Format: application/zip, 4 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2023-10-28
    Description: N2O production rates from ammonium, nitrite and nitrate and nitrate reduction rates and ammonium oxidation rates from the top 400 m water depth off the coast of Peru sampled from R/V Meteor during M138 in June 2017.
    Keywords: Ammonium; Ammonium, oxidation rate; Climate - Biogeochemistry Interactions in the Tropical Ocean; CTD/Rosette; CTD 013; CTD 018; CTD 036; CTD 044; CTD 063; CTD 069; CTD 076; CTD 085; CTD 099; CTD-RO; DATE/TIME; Density, sigma-theta (0); DEPTH, water; ELEVATION; Event label; LATITUDE; LONGITUDE; M138; M138_882-11; M138_883-15; M138_892-3; M138_894-4; M138_904-7; M138_906-7; M138_907-7; M138_912-1; M138_917-3; Meteor (1986); Nitrate; Nitrate, reduction rate; Nitrate and Nitrite; Nitrite; Nitrous oxide production; OMZ; Oxygen; Phosphate; Ratio; Salinity; Sample code/label; SFB754; Silicate; Standard deviation; Standard error; Temperature, water; Yield
    Type: Dataset
    Format: text/tab-separated-values, 474 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2023-12-18
    Description: The data set comprises concentrations of dissolved N2O from seawater samples collected during the 36th Chinese Antarctic Research Expedition (36th CHINARE). The 36th CHINARE took place onboard the research vessel/icebreaker Xuelong 2 between the 3rd and 31st of January 2020 and focused on physical and biogeochemical surveys of the Ross Sea (Pacific sector of the Southern Ocean). Samples were collected by drawing water from 10 L Niskin bottles (installed on a standard CTD-Rosette) into brown borosilicate 20 mL vials, which were then sealed with rubber (butyl) stoppers and aluminium caps. Immediately after collection, samples were preserved by adding 0.05 mL of a saturated mercuric chloride solution. Samples were analyzed by means of a standard headspace method coupled to gas chromatography/electron capture detection. Details on the measurement equipment and data analysis can be found in Kock et al. (2016; see: www.biogeosciences.net/13/827/2016/).
    Keywords: Chinare36; Chinare36_A11-0-1; Chinare36_A11-0-10; Chinare36_A11-0-2; Chinare36_A11-0-3; Chinare36_A11-0-4; Chinare36_A11-0-5; Chinare36_A11-0-6; Chinare36_A11-0-7; Chinare36_A11-0-8; Chinare36_A11-0-9; Chinare36_A11-1-1; Chinare36_A11-1-10; Chinare36_A11-1-2; Chinare36_A11-1-3; Chinare36_A11-1-4; Chinare36_A11-1-5; Chinare36_A11-1-6; Chinare36_A11-1-7; Chinare36_A11-1-8; Chinare36_A11-1-9; Chinare36_A11-2-1; Chinare36_A11-2-10; Chinare36_A11-2-2; Chinare36_A11-2-3; Chinare36_A11-2-4; Chinare36_A11-2-5; Chinare36_A11-2-6; Chinare36_A11-2-7; Chinare36_A11-2-8; Chinare36_A11-2-9; Chinare36_A11-3-1; Chinare36_A11-3-10; Chinare36_A11-3-2; Chinare36_A11-3-3; Chinare36_A11-3-4; Chinare36_A11-3-5; Chinare36_A11-3-6; Chinare36_A11-3-7; Chinare36_A11-3-8; Chinare36_A11-4-1; Chinare36_A11-4-2; Chinare36_A11-4-3; Chinare36_A11-4-4; Chinare36_A11-4-6; Chinare36_A11-4-7; Chinare36_A11-4-8; Chinare36_A11-4-9; Chinare36_A3-10-1; Chinare36_A3-10-10; Chinare36_A3-10-11; Chinare36_A3-10-12; Chinare36_A3-10-13; Chinare36_A3-10-14; Chinare36_A3-10-2; Chinare36_A3-10-3; Chinare36_A3-10-4; Chinare36_A3-10-5; Chinare36_A3-10-6; Chinare36_A3-10-7; Chinare36_A3-10-8; Chinare36_A3-10-9; Chinare36_A3-5-1; Chinare36_A3-5-10; Chinare36_A3-5-11; Chinare36_A3-5-2; Chinare36_A3-5-3; Chinare36_A3-5-4; Chinare36_A3-5-5; Chinare36_A3-5-6; Chinare36_A3-5-7; Chinare36_A3-5-8; Chinare36_A3-5-9; Chinare36_A3-9-1; Chinare36_A3-9-10; Chinare36_A3-9-12; Chinare36_A3-9-13; Chinare36_A3-9-14; Chinare36_A3-9-2; Chinare36_A3-9-3; Chinare36_A3-9-4; Chinare36_A3-9-5; Chinare36_A3-9-6; Chinare36_A3-9-7; Chinare36_A3-9-8; Chinare36_A3-9-9; Chinare36_A4-3-1; Chinare36_A4-3-2; Chinare36_A4-3-3; Chinare36_A4-3-4; Chinare36_A4-3-6; Chinare36_A4-3-7; Chinare36_A4-3-8; Chinare36_A4-3-9; Chinare36_R1-1-1; Chinare36_R1-1-2; Chinare36_R1-1-3; Chinare36_R1-1-4; Chinare36_R1-1-6; Chinare36_R1-1-7; Chinare36_R1-1-8; Chinare36_R1-1-9; Chinare36_R1-2-1; Chinare36_R1-2-10; Chinare36_R1-2-2; Chinare36_R1-2-3; Chinare36_R1-2-4; Chinare36_R1-2-5; Chinare36_R1-2-6; Chinare36_R1-2-7; Chinare36_R1-2-8; Chinare36_R1-2-9; Chinare36_R1-3-1; Chinare36_R1-3-10; Chinare36_R1-3-2; Chinare36_R1-3-3; Chinare36_R1-3-4; Chinare36_R1-3-5; Chinare36_R1-3-6; Chinare36_R1-3-7; Chinare36_R1-3-8; Chinare36_R1-3-9; Chinare36_R1-4-1; Chinare36_R1-4-2; Chinare36_R1-4-3; Chinare36_R1-4-4; Chinare36_R1-4-5; Chinare36_R1-4-6; Chinare36_R1-4-7; Chinare36_R1-4-8; Chinare36_R1-4-9; Chinare36_R1-5-1; Chinare36_R1-5-2; Chinare36_R1-5-3; Chinare36_R1-5-5; Chinare36_R1-5-6; Chinare36_R1-5-8; Chinare36_R1-5-9; Chinare36_R1-6-1; Chinare36_R1-6-2; Chinare36_R1-6-3; Chinare36_R1-6-4; Chinare36_R1-6-5; Chinare36_R1-6-6; Chinare36_R1-6-7; Chinare36_R1-6-8; Chinare36_R1-6-9; Chinare36_R1-7-1; Chinare36_R1-7-2; Chinare36_R1-7-3; Chinare36_R1-7-4; Chinare36_R1-7-5; Chinare36_R1-7-6; Chinare36_R1-7-7; Chinare36_R1-7-8; Chinare36_R1-8-1; Chinare36_R1-8-2; Chinare36_R1-8-3; Chinare36_R1-8-4; Chinare36_R1-8-5; Chinare36_R1-8-6; Chinare36_R1-8-8; Chinare36_R1-8-9; Chinare36_RA1-0-1; Chinare36_RA1-0-10; Chinare36_RA1-0-11; Chinare36_RA1-0-12; Chinare36_RA1-0-13; Chinare36_RA1-0-2; Chinare36_RA1-0-3; Chinare36_RA1-0-4; Chinare36_RA1-0-5; Chinare36_RA1-0-6; Chinare36_RA1-0-7; Chinare36_RA1-0-8; Chinare36_RA1-0-9; Chinare36_RA1-1-1; Chinare36_RA1-1-10; Chinare36_RA1-1-11; Chinare36_RA1-1-12; Chinare36_RA1-1-13; Chinare36_RA1-1-2; Chinare36_RA1-1-3; Chinare36_RA1-1-4; Chinare36_RA1-1-5; Chinare36_RA1-1-6; Chinare36_RA1-1-7; Chinare36_RA1-1-8; Chinare36_RA1-1-9; Chinare36_RA1-2-1; Chinare36_RA1-2-10; Chinare36_RA1-2-11; Chinare36_RA1-2-12; Chinare36_RA1-2-13; Chinare36_RA1-2-2; Chinare36_RA1-2-3; Chinare36_RA1-2-4; Chinare36_RA1-2-5; Chinare36_RA1-2-6; Chinare36_RA1-2-7; Chinare36_RA1-2-8; Chinare36_RA1-2-9; Chinare36_RA1-3-1; Chinare36_RA1-3-10; Chinare36_RA1-3-11; Chinare36_RA1-3-12; Chinare36_RA1-3-13; Chinare36_RA1-3-2; Chinare36_RA1-3-3; Chinare36_RA1-3-4; Chinare36_RA1-3-5; Chinare36_RA1-3-6; Chinare36_RA1-3-7; Chinare36_RA1-3-8; Chinare36_RA1-3-9; Chinare36_RA1-4-3; Chinare36_RA1-4-4; Chinare36_RA1-4-5; Chinare36_RA1-4-6; Chinare36_RA1-4-7; Chinare36_RA1-4-8; Chinare36_RA1-4-9; Chinare36_RA1-5-1; Chinare36_RA1-5-10; Chinare36_RA1-5-11; Chinare36_RA1-5-12; Chinare36_RA1-5-13; Chinare36_RA1-5-14; Chinare36_RA1-5-2; Chinare36_RA1-5-3; Chinare36_RA1-5-4; Chinare36_RA1-5-5; Chinare36_RA1-5-6; Chinare36_RA1-5-7; Chinare36_RA1-5-8; Chinare36_RA1-5-9; Chinare36_RA1-6-1; Chinare36_RA1-6-10; Chinare36_RA1-6-11; Chinare36_RA1-6-12; Chinare36_RA1-6-13; Chinare36_RA1-6-14; Chinare36_RA1-6-2; Chinare36_RA1-6-3; Chinare36_RA1-6-4; Chinare36_RA1-6-5; Chinare36_RA1-6-6; Chinare36_RA1-6-7; Chinare36_RA1-6-8; Chinare36_RA1-6-9; Chinare36_RA1-7-1; Chinare36_RA1-7-10; Chinare36_RA1-7-11; Chinare36_RA1-7-12; Chinare36_RA1-7-13; Chinare36_RA1-7-14; Chinare36_RA1-7-3; Chinare36_RA1-7-4; Chinare36_RA1-7-5; Chinare36_RA1-7-6; Chinare36_RA1-7-7; Chinare36_RA1-7-8; Chinare36_RA1-7-9; Chinare36_RA2-1-1; Chinare36_RA2-1-10; Chinare36_RA2-1-11; Chinare36_RA2-1-2; Chinare36_RA2-1-3; Chinare36_RA2-1-4; Chinare36_RA2-1-5; Chinare36_RA2-1-6; Chinare36_RA2-1-7; Chinare36_RA2-1-8; Chinare36_RA2-1-9; Chinare36_RA2-2-1; Chinare36_RA2-2-10; Chinare36_RA2-2-11; Chinare36_RA2-2-12; Chinare36_RA2-2-13; Chinare36_RA2-2-2; Chinare36_RA2-2-3; Chinare36_RA2-2-4; Chinare36_RA2-2-5; Chinare36_RA2-2-6; Chinare36_RA2-2-7; Chinare36_RA2-2-8; Chinare36_RA2-2-9; Chinare36_RA2-3-1; Chinare36_RA2-3-10; Chinare36_RA2-3-11; Chinare36_RA2-3-2; Chinare36_RA2-3-3; Chinare36_RA2-3-4; Chinare36_RA2-3-5; Chinare36_RA2-3-6; Chinare36_RA2-3-7; Chinare36_RA2-3-8; Chinare36_RA2-3-9; Chinare36_RA2-5-1; Chinare36_RA2-5-10; Chinare36_RA2-5-11; Chinare36_RA2-5-12; Chinare36_RA2-5-13; Chinare36_RA2-5-14; Chinare36_RA2-5-2; Chinare36_RA2-5-3; Chinare36_RA2-5-4; Chinare36_RA2-5-5; Chinare36_RA2-5-6; Chinare36_RA2-5-7; Chinare36_RA2-5-8; Chinare36_RA2-5-9; Chinare36_RA2-6-1; Chinare36_RA2-6-10; Chinare36_RA2-6-11; Chinare36_RA2-6-12; Chinare36_RA2-6-13; Chinare36_RA2-6-14; Chinare36_RA2-6-2; Chinare36_RA2-6-3; Chinare36_RA2-6-4; Chinare36_RA2-6-5; Chinare36_RA2-6-6; Chinare36_RA2-6-7; Chinare36_RA2-6-8; Chinare36_RA2-6-9; Chinare36_RA2-7-1; Chinare36_RA2-7-10; Chinare36_RA2-7-11; Chinare36_RA2-7-12; Chinare36_RA2-7-13; Chinare36_RA2-7-14; Chinare36_RA2-7-2; Chinare36_RA2-7-3; Chinare36_RA2-7-4; Chinare36_RA2-7-5; Chinare36_RA2-7-6; Chinare36_RA2-7-7; Chinare36_RA2-7-8; Chinare36_RA2-7-9; Chinare36_RA3-2-1; Chinare36_RA3-2-2; Chinare36_RA3-2-3; Chinare36_RA3-2-4; Chinare36_RA3-2-5; Chinare36_RA3-2-6; Chinare36_RA3-2-7; Chinare36_RA3-2-8; Chinare36_RA3-2-9; Chinare36_RA3-3-1; Chinare36_RA3-3-10; Chinare36_RA3-3-11; Chinare36_RA3-3-12; Chinare36_RA3-3-2; Chinare36_RA3-3-3; Chinare36_RA3-3-4; Chinare36_RA3-3-5; Chinare36_RA3-3-6; Chinare36_RA3-3-7; Chinare36_RA3-3-8; Chinare36_RA3-3-9; Chinare36_RA3-4-1; Chinare36_RA3-4-10; Chinare36_RA3-4-11; Chinare36_RA3-4-2; Chinare36_RA3-4-3; Chinare36_RA3-4-4; Chinare36_RA3-4-5; Chinare36_RA3-4-6; Chinare36_RA3-4-7; Chinare36_RA3-4-8; Chinare36_RA3-4-9; Chinare36_RA3-5-1; Chinare36_RA3-5-10; Chinare36_RA3-5-11; Chinare36_RA3-5-12; Chinare36_RA3-5-13; Chinare36_RA3-5-2; Chinare36_RA3-5-3; Chinare36_RA3-5-4; Chinare36_RA3-5-5; Chinare36_RA3-5-6; Chinare36_RA3-5-7; Chinare36_RA3-5-8; Chinare36_RA3-5-9; Chinare36_RA3-6-1; Chinare36_RA3-6-10; Chinare36_RA3-6-11; Chinare36_RA3-6-12; Chinare36_RA3-6-13; Chinare36_RA3-6-2; Chinare36_RA3-6-3; Chinare36_RA3-6-4; Chinare36_RA3-6-5; Chinare36_RA3-6-6; Chinare36_RA3-6-7; Chinare36_RA3-6-8; Chinare36_RA3-6-9; Chinare36_RA3-7-10; Chinare36_RA3-7-11; Chinare36_RA3-7-12; Chinare36_RA3-7-13; Chinare36_RA3-7-14; Chinare36_RA3-7-2; Chinare36_RA3-7-3; Chinare36_RA3-7-4; Chinare36_RA3-7-5; Chinare36_RA3-7-6; Chinare36_RA3-7-7; Chinare36_RA3-7-8; Chinare36_RA3-7-9; DATE/TIME; Density, sigma, in situ; DEPTH, water; Event label; Greenhouse gases; LATITUDE; LONGITUDE; nitrous oxide; Nitrous oxide; Nitrous oxide, dissolved; Salinity; Southern Ocean; Temperature, water;
    Type: Dataset
    Format: text/tab-separated-values, 2460 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-01-20
    Keywords: Climate - Biogeochemistry Interactions in the Tropical Ocean; CT; DATE/TIME; Fugacity of carbon dioxide (air, 100% humidity); Fugacity of carbon dioxide in seawater; LATITUDE; LONGITUDE; M93; M93-track; Meteor (1986); Salinity; SFB754; Southeast Pacific; Temperature, water; Underway cruise track measurements; Wind speed
    Type: Dataset
    Format: text/tab-separated-values, 6454 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Arévalo-Martínez, Damian L; Kock, Annette; Löscher, Carolin R; Schmitz, Ruth A; Bange, Hermann Werner (2015): Massive nitrous oxide emissions from the tropical South Pacific Ocean. Nature Geoscience, 8(7), 530-533, https://doi.org/10.1038/ngeo2469
    Publication Date: 2024-02-01
    Description: Nitrous oxide is a potent greenhouse gas and a key compound in stratospheric ozone depletion. In the ocean, nitrous oxide is produced at intermediate depths through nitrification and denitrification, in particular at low oxygen concentrations. Although a third of natural emissions of nitrous oxide to the atmosphere originate from the ocean, considerable uncertainties in the distribution and magnitude of the emissions still exist. Here we present high-resolution surface measurements and vertical profiles of nitrous oxide that include the highest reported nitrous oxide concentrations in marine surface waters, suggesting that there is a hotspot of nitrous oxide emissions in high-productivity upwelling ecosystems along the Peruvian coast. We estimate that off Peru, the extremely high nitrous oxide supersaturations we observed drive a massive efflux of 0.2–0.9 Tg of nitrogen emitted as nitrous oxide per year, equivalent to 5–22% of previous estimates of global marine nitrous oxide emissions. Nutrient and gene abundance data suggest that coupled nitrification–denitrification in the upper oxygen minimum zone and transport of resulting nitrous oxide to the surface by upwelling lead to the high nitrous oxide concentrations. Our estimate of nitrous oxide emissions from the Peruvian coast surpasses values from similar, highly productive areas.
    Keywords: Climate - Biogeochemistry Interactions in the Tropical Ocean; CT; M90; M90-track; Meteor (1986); SFB754; SOPRAN; Southeast Pacific; Surface Ocean Processes in the Anthropocene; Underway cruise track measurements
    Type: Dataset
    Format: application/zip, 6 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Fischer, Tim; Kock, Annette; Arévalo-Martínez, Damian L; Dengler, Marcus; Brandt, Peter; Bange, Hermann Werner (2019): Gas exchange estimates in the Peruvian upwelling regime biased by multi-day near-surface stratification. Biogeosciences, 16(11), 2307-2328, https://doi.org/10.5194/bg-16-2307-2019
    Publication Date: 2024-02-01
    Description: The coastal upwelling regime off Peru in December 2012 showed considerable vertical concentration gradients of dissolved nitrous oxide (N2O) across the top few meters of the ocean. The gradients were predominantly downward, i.e., concentrations decreased toward the surface. Ignoring these gradients causes a systematic error in regionally integrated gas exchange estimates, when using observed concentrations at several meters below the surface as input for bulk flux parameterizations – as is routinely practiced. Here we propose that multi-day near-surface stratification events are responsible for the observed near-surface N2O gradients, and that the gradients induce the strongest bias in gas exchange estimates at winds of about 3 to 6 m s−1. Glider hydrographic time series reveal that events of multi-day near-surface stratification are a common feature in the study region. In the same way as shorter events of near-surface stratification (e.g., the diurnal warm layer cycle), they preferentially exist under calm to moderate wind conditions, suppress turbulent mixing, and thus lead to isolation of the top layer from the waters below (surface trapping). Our observational data in combination with a simple gas-transfer model of the surface trapping mechanism show that multi-day near-surface stratification can produce near-surface N2O gradients comparable to observations. They further indicate that N2O gradients created by diurnal or shorter stratification cycles are weaker and do not substantially impact bulk emission estimates. Quantitatively, we estimate that the integrated bias for the entire Peruvian upwelling region in December 2012 represents an overestimation of the total N2O emission by about a third, if concentrations at 5 or 10 m depth are used as surrogate for bulk water N2O concentration. Locally, gradients exist which would lead to emission rates overestimated by a factor of two or more. As the Peruvian upwelling region is an N2O source of global importance, and other strong N2O source regions could tend to develop multi-day near-surface stratification as well, the bias resulting from multi-day near-surface stratification may also impact global oceanic N2O emission estimates.
    Keywords: Climate - Biogeochemistry Interactions in the Tropical Ocean; SFB754; SOPRAN; Surface Ocean Processes in the Anthropocene
    Type: Dataset
    Format: application/zip, 2 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Korth, Frederike; Kock, Annette; Arévalo-Martínez, Damian L; Bange, Hermann Werner (2019): Hydroxylamine as a Potential Indicator of Nitrification in the Open Ocean. Geophysical Research Letters, 46(4), 2158-2166, https://doi.org/10.1029/2018GL080466
    Publication Date: 2024-02-01
    Description: Hydroxylamine (NH 2 OH), a short-lived intermediate in the nitrogen cycle, is a potential precursor of nitrous oxide (N 2 O) in the ocean. However, measurements of NH 2 OH in the ocean are sparse. Here we present a data set of depth profiles of NH 2 OH from the equatorial Atlantic Ocean and the eastern tropical South Pacific and compare it to N 2 O, nitrate, and nitrite profiles under varying oxygen conditions. The presence of NH 2 OH in surface waters points toward surface nitrification in the upper 100 m. Overall, we found a ratio of 1:3 between NH 2 OH and N 2 O in open ocean areas when oxygen concentrations were 〉50 μmol/L. In the equatorial Atlantic Ocean and the open ocean eastern tropical South Pacific, where nitrification is the dominant N 2 O production pathway, stepwise multiple regressions demonstrated that N 2 O, NH 2 OH, and nitrate concentrations were highly correlated, suggesting that NH 2 OH is a potential indicator for nitrification.
    Keywords: Climate - Biogeochemistry Interactions in the Tropical Ocean; SFB754; SOPRAN; Surface Ocean Processes in the Anthropocene; water column
    Type: Dataset
    Format: application/zip, 3 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...