ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Publikationsdatum: 2009-10-31
    Print ISSN: 0956-5515
    Digitale ISSN: 1572-8145
    Thema: Maschinenbau
    Publiziert von Springer
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2011-10-13
    Beschreibung: Vertical axis wind turbines have always been a controversial technology; claims regarding their benefits and drawbacks have been debated since the initial patent in 1931. Despite this contention, very little systematic vertical axis wind turbine research has been accomplished. Experimental assessments remain prohibitively expensive, while analytical analyses are limited by the complexity of the system. Numerical methods can address both concerns, but inadequate computing power hampered this field. Instead, approximating models were developed which provided some basis for study; but all these exhibited high error margins when compared with actual turbine performance data and were only useful in some operating regimes. Modern computers are capable of more accurate computational fluid dynamics analysis, but most research has focused on horizontal axis configurations or modeling of single blades rather than full geometries. In order to address this research gap, a systematic review of vertical axis wind-power turbine (VAWT) was undertaken, starting with establishment of a methodology for vertical axis wind turbine simulation that is presented in this paper. Replicating the experimental prototype, both 2D and 3D models of a three-bladed vertical axis wind turbine were generated. Full transient computational fluid dynamics (CFD) simulations using mesh deformation capability available in ansys-CFX were run from turbine start-up to operating speed and compared with the experimental data in order to validate the technique. A circular inner domain, containing the blades and the rotor, was allowed to undergo mesh deformation with a rotational velocity that varied with torque generated by the incoming wind. Results have demonstrated that a transient CFD simulation using a two-dimensional computational model can accurately predict vertical axis wind turbine operating speed within 12% error, with the caveat that intermediate turbine performance is not accurately captured.
    Print ISSN: 0199-6231
    Digitale ISSN: 1528-8986
    Thema: Energietechnik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2013-08-31
    Beschreibung: Certain experiments contemplated for space platforms must be isolated from the accelerations of the platform. An optimal active control is developed for microgravity vibration isolation, using constant state feedback gains (identical to those obtained from the Linear Quadratic Regulator (LQR) approach) along with constant feedforward gains. The quadratic cost function for this control algorithm effectively weights external accelerations of the platform disturbances by a factor proportional to (1/omega) exp 4. Low frequency accelerations are attenuated by greater than two orders of magnitude. The control relies on the absolute position and velocity feedback of the experiment and the absolute position and velocity feedforward of the platform, and generally derives the stability robustness characteristics guaranteed by the LQR approach to optimality. The method as derived is extendable to the case in which only the relative positions and velocities and the absolute accelerations of the experiment and space platform are available.
    Schlagwort(e): SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Materialart: NASA, Langley Research Center, Aerospace Applications of Magnetic Suspension Technology, Part 2; p 413-476
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Publikationsdatum: 2013-08-29
    Beschreibung: Research at the University of Virginia on microgravity vibration isolation is reviewed. This work falls into three areas: the one degree of freedom isolation test rig and Lorentz actuator design, multiple degree of freedom active isolation system control, and innovative actuators for long stroke, non-contacting six degree of freedom isolation. Theoretical and design issues of multiple degree of freedom isolation are discussed.
    Schlagwort(e): MATERIALS PROCESSING
    Materialart: NASA. Lewis Research Center, International Workshop on Vibration Isolation Technology for Microgravity Science Applications; p 257-264
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Publikationsdatum: 2013-08-29
    Beschreibung: It is well known that the spacecraft environment deviates from a state of zero gravity due to various random as well as repetitive sources. Science experiments that require a microgravity environment must therefore be isolated from these disturbances. Active control of noncontact magnetic actuators enables such isolation. A one degree of freedom test rig has been constructed to demonstrate the isolation capability achievable using magnetic actuators. A cylindrical mass on noncontacting electromagnetic supports simulates a microgravity experiment on board an orbiter. Disturbances generated by an electrodynamic shaker are transmitted to the mass via dashpots representing umbilicals. A compact Lorentz actuator has been designed to provide attenuation of this disturbance.
    Schlagwort(e): MECHANICAL ENGINEERING
    Materialart: NASA. Langley Research Center, International Symposium on Magnetic Suspension Technology, Part 1; p 435-456
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Publikationsdatum: 2019-07-13
    Beschreibung: The research on microgravity vibration isolation performed at the University of Virginia is summarized. This research on microgravity vibration isolation was focused in three areas: (1) the development of new actuators for use in microgravity isolation; (2) the design of controllers for multiple-degree-of-freedom active isolation; and (3) the construction of a single-degree-of-freedom test rig with umbilicals. Described are the design and testing of a large stroke linear actuator; the conceptual design and analysis of a redundant coarse-fine six-degree-of-freedom actuator; an investigation of the control issues of active microgravity isolation; a methodology for the design of multiple-degree-of-freedom isolation control systems using modern control theory; and the design and testing of a single-degree-of-freedom test rig with umbilicals.
    Schlagwort(e): STRUCTURAL MECHANICS
    Materialart: NASA-CR-193038 , NAS 1.26:193038 , UVA/528292/MANE93/101
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    Publikationsdatum: 2019-08-16
    Beschreibung: A long-stroke moving coil Lorentz Actuator was designed for use in a microgravity vibration isolation experiment. The final design had a stroke of 5.08 cm (2 in) and enough force capability to isolate a mass of the order of 22.7-45.4 kg. A simple dynamic magnetic circuit analysis, using an electrical analog, was developed for the initial design of the actuator. A neodymium-iron-boron material with energy density of 278 T-kA/m (35 MGOe) was selected to supply the magnetic field. The effect of changes in the design parameters of core diameter, shell outer diameter, pole face length, and coil wire layers were investigated. An extensive three-dimensional finite element analysis was carried out to accurately determine linearity with regard to axial position of the coil and coil current levels. The actuator was constructed and tested on a universal testing machine. Example plots are shown, indicating good linearity over the stroke of approximately 5.08 cm (2 in) and a range of coil currents from -1.5 A to +1.5 A. The actuator was then used for the microgravity vibration isolation experiments, described elsewhere.
    Schlagwort(e): Mechanical Engineering
    Materialart: Third International Symposium on Magnetic Suspension Technology; Part 1; 365-383; NASA-CP-3336-Pt-1
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...