ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2016-03-18
    Description: Functional genetics-directed identification of novel pharmacological inhibitors of FAS- and TNF-dependent apoptosis that protect mice from acute liver failure Cell Death and Disease 7, e2145 (March 2016). doi:10.1038/cddis.2016.45 Authors: A P Komarov, E A Komarova, K Green, L R Novototskaya, P S Baker, A Eroshkin, A L Osterman, A A Chenchick, C Frangou & A V Gudkov
    Electronic ISSN: 2041-4889
    Topics: Biology , Medicine
    Published by Springer Nature
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2008-04-12
    Description: The toxicity of ionizing radiation is associated with massive apoptosis in radiosensitive organs. Here, we investigate whether a drug that activates a signaling mechanism used by tumor cells to suppress apoptosis can protect healthy cells from the harmful effects of radiation. We studied CBLB502, a polypeptide drug derived from Salmonella flagellin that binds to Toll-like receptor 5 (TLR5) and activates nuclear factor-kappaB signaling. A single injection of CBLB502 before lethal total-body irradiation protected mice from both gastrointestinal and hematopoietic acute radiation syndromes and resulted in improved survival. CBLB502 injected after irradiation also enhanced survival, but at lower radiation doses. It is noteworthy that the drug did not decrease tumor radiosensitivity in mouse models. CBLB502 also showed radioprotective activity in lethally irradiated rhesus monkeys. Thus, TLR5 agonists could potentially improve the therapeutic index of cancer radiotherapy and serve as biological protectants in radiation emergencies.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4322935/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4322935/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Burdelya, Lyudmila G -- Krivokrysenko, Vadim I -- Tallant, Thomas C -- Strom, Evguenia -- Gleiberman, Anatoly S -- Gupta, Damodar -- Kurnasov, Oleg V -- Fort, Farrel L -- Osterman, Andrei L -- Didonato, Joseph A -- Feinstein, Elena -- Gudkov, Andrei V -- AI066497/AI/NIAID NIH HHS/ -- CA75179/CA/NCI NIH HHS/ -- CA84406/CA/NCI NIH HHS/ -- R01 CA084406/CA/NCI NIH HHS/ -- R01 CA084406-01A1/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2008 Apr 11;320(5873):226-30. doi: 10.1126/science.1154986.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18403709" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Apoptosis/drug effects/radiation effects ; Chemotherapy, Adjuvant ; Flagellin/chemistry/pharmacology ; Gamma Rays ; Hematopoietic System/drug effects/radiation effects ; Intestine, Small/cytology/drug effects/radiation effects ; Macaca mulatta ; Mice ; Mice, Inbred ICR ; Molecular Sequence Data ; NF-kappa B/*metabolism ; Neoplasms, Experimental/drug therapy/radiotherapy ; Peptides/administration & dosage/chemistry/*pharmacology/toxicity ; Radiation Dosage ; Radiation Injuries, Experimental/*prevention & control ; Radiation Tolerance/*drug effects ; Radiation-Protective Agents/administration & ; dosage/chemistry/*pharmacology/toxicity ; Salmonella enterica ; Signal Transduction ; Toll-Like Receptor 5/*agonists/metabolism ; Whole-Body Irradiation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2012-02-22
    Description: Toll-like receptor 5 (TLR5) binding to bacterial flagellin activates signaling through the transcription factor NF-kappaB and triggers an innate immune response to the invading pathogen. To elucidate the structural basis and mechanistic implications of TLR5-flagellin recognition, we determined the crystal structure of zebrafish TLR5 (as a variable lymphocyte receptor hybrid protein) in complex with the D1/D2/D3 fragment of Salmonella flagellin, FliC, at 2.47 angstrom resolution. TLR5 interacts primarily with the three helices of the FliC D1 domain using its lateral side. Two TLR5-FliC 1:1 heterodimers assemble into a 2:2 tail-to-tail signaling complex that is stabilized by quaternary contacts of the FliC D1 domain with the convex surface of the opposing TLR5. The proposed signaling mechanism is supported by structure-guided mutagenesis and deletion analyses on CBLB502, a therapeutic protein derived from FliC.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3406927/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3406927/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yoon, Sung-il -- Kurnasov, Oleg -- Natarajan, Venkatesh -- Hong, Minsun -- Gudkov, Andrei V -- Osterman, Andrei L -- Wilson, Ian A -- AI042266/AI/NIAID NIH HHS/ -- R01 AI042266/AI/NIAID NIH HHS/ -- R01 AI042266-05/AI/NIAID NIH HHS/ -- R01 AI080446/AI/NIAID NIH HHS/ -- R01 AI080446-05/AI/NIAID NIH HHS/ -- RC2 AI087616/AI/NIAID NIH HHS/ -- RC2 AI087616-02/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2012 Feb 17;335(6070):859-64. doi: 10.1126/science.1215584.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22344444" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Crystallography, X-Ray ; Dimerization ; Flagellin/*chemistry/metabolism ; Models, Molecular ; Mutagenesis ; Protein Conformation ; Salmonella enterica ; *Signal Transduction ; Structure-Activity Relationship ; Toll-Like Receptor 5/*chemistry/genetics/metabolism ; Zebrafish ; Zebrafish Proteins/*chemistry/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-10-03
    Description: Libraries of tens of thousands of transposon mutants generated from each of four human gut Bacteroides strains, two representing the same species, were introduced simultaneously into gnotobiotic mice together with 11 other wild-type strains to generate a 15-member artificial human gut microbiota. Mice received one of two distinct diets monotonously, or both in different ordered sequences. Quantifying the abundance of mutants in different diet contexts allowed gene-level characterization of fitness determinants, niche, stability, and resilience and yielded a prebiotic (arabinoxylan) that allowed targeted manipulation of the community. The approach described is generalizable and should be useful for defining mechanisms critical for sustaining and/or approaches for deliberately reconfiguring the highly adaptive and durable relationship between the human gut microbiota and host in ways that promote wellness.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4608238/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4608238/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wu, Meng -- McNulty, Nathan P -- Rodionov, Dmitry A -- Khoroshkin, Matvei S -- Griffin, Nicholas W -- Cheng, Jiye -- Latreille, Phil -- Kerstetter, Randall A -- Terrapon, Nicolas -- Henrissat, Bernard -- Osterman, Andrei L -- Gordon, Jeffrey I -- DK30292/DK/NIDDK NIH HHS/ -- DK52574/DK/NIDDK NIH HHS/ -- DK70977/DK/NIDDK NIH HHS/ -- GM108527/GM/NIGMS NIH HHS/ -- P30 DK052574/DK/NIDDK NIH HHS/ -- R01 DK070977/DK/NIDDK NIH HHS/ -- R01 GM108527/GM/NIGMS NIH HHS/ -- R37 DK030292/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 2015 Oct 2;350(6256):aac5992. doi: 10.1126/science.aac5992.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63108, USA. Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, MO 63108, USA. ; Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63108, USA. ; Infectious and Inflammatory Disease Center, Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, 92037 CA, USA. A. A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow 127994, Russia. ; A. A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow 127994, Russia. ; Monsanto Company, St. Louis, MO 63167, USA. ; Architecture et Fonction des Macromolecules Biologiques, Centre National de la Recherche Scientifique et Aix-Marseille Universite 13288 Marseille cedex 9, France. ; Architecture et Fonction des Macromolecules Biologiques, Centre National de la Recherche Scientifique et Aix-Marseille Universite 13288 Marseille cedex 9, France. Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia. ; Infectious and Inflammatory Disease Center, Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, 92037 CA, USA. ; Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63108, USA. jgordon@wustl.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26430127" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bacteroides/*genetics/*metabolism ; DNA Transposable Elements/*genetics ; *Diet ; Gastrointestinal Tract/*microbiology ; Gene Library ; Genetic Fitness/*genetics ; Genetic Loci ; Genetic Markers ; Germ-Free Life ; Humans ; Mice ; Mutagenesis, Insertional/*methods ; Prebiotics ; Sequence Analysis, DNA/*methods ; Xylans/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2016-02-26
    Description: Undernourished children exhibit impaired development of their gut microbiota. Transplanting microbiota from 6- and 18-month-old healthy or undernourished Malawian donors into young germ-free mice that were fed a Malawian diet revealed that immature microbiota from undernourished infants and children transmit impaired growth phenotypes. The representation of several age-discriminatory taxa in recipient animals correlated with lean body mass gain; liver, muscle, and brain metabolism; and bone morphology. Mice were cohoused shortly after receiving microbiota from healthy or severely stunted and underweight infants; age- and growth-discriminatory taxa from the microbiota of the former were able to invade that of the latter, which prevented growth impairments in recipient animals. Adding two invasive species, Ruminococcus gnavus and Clostridium symbiosum, to the microbiota from undernourished donors also ameliorated growth and metabolic abnormalities in recipient animals. These results provide evidence that microbiota immaturity is causally related to undernutrition and reveal potential therapeutic targets and agents.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4787260/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4787260/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Blanton, Laura V -- Charbonneau, Mark R -- Salih, Tarek -- Barratt, Michael J -- Venkatesh, Siddarth -- Ilkaveya, Olga -- Subramanian, Sathish -- Manary, Mark J -- Trehan, Indi -- Jorgensen, Josh M -- Fan, Yue-Mei -- Henrissat, Bernard -- Leyn, Semen A -- Rodionov, Dmitry A -- Osterman, Andrei L -- Maleta, Kenneth M -- Newgard, Christopher B -- Ashorn, Per -- Dewey, Kathryn G -- Gordon, Jeffrey I -- R37 DK030292/DK/NIDDK NIH HHS/ -- T32 AI007172/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 2016 Feb 19;351(6275). pii: aad3311. doi: 10.1126/science.aad3311.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Genome Sciences and Systems Biology and Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, MO 63108, USA. ; Sarah W. Stedman Nutrition and Metabolism Centerand Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC 27710, USA. ; Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA. School of Public Health and Family Medicine, College of Medicine, University of Malawi, Chichiri, Blantyre 3, Malawi. ; Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA. Department of Paediatrics and Child Health, College of Medicine, University of Malawi, Chichiri, Blantyre 3, Malawi. ; Department of Nutrition and Program in International and Community Nutrition, University of California-Davis, Davis, CA 95616, USA. ; Department for International Health, University of Tampere School of Medicine, Tampere 33014, Finland. ; Architecture et Fonction des Macromolecules Biologiques, Centre National de la Recherche Scientifique and Aix-Marseille Universite, 13288 Marseille Cedex 9, France. Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia. ; A. A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow 127994, Russia. ; A. A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow 127994, Russia. Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA. ; Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA. ; School of Public Health and Family Medicine, College of Medicine, University of Malawi, Chichiri, Blantyre 3, Malawi. ; Sarah W. Stedman Nutrition and Metabolism Centerand Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC 27710, USA. Department of Pharmacology and Cancer Biology and Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA. ; Department for International Health, University of Tampere School of Medicine, Tampere 33014, Finland. Department of Pediatrics, Tampere University Hospital, Tampere 33521, Finland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26912898" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bacteria/*classification ; Bifidobacterium/physiology ; Body Weight ; Bone Development ; Clostridiales/physiology ; Disease Models, Animal ; Feces/microbiology ; Femur/growth & development ; Gastrointestinal Microbiome/*physiology ; Germ-Free Life ; Humans ; Infant ; Infant Nutrition Disorders/metabolism/*microbiology ; Malawi ; Male ; Mice ; Mice, Inbred C57BL
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1573-4943
    Keywords: Bacillus thuringiensis, δ-endotoxins ; limited proteolysis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract N-Terminal domain (65 kD) of δ-endotoxin produced byBacillus thuringiensis ssp.alesti, as shown by limited proteolysis, consists of two subdomains of molecular mass 30 and 33 kD that correspond, respectively, to conservative and variable regions of the δ-endotoxin primary structure. Furthermore, proteolysis of these subdomains leads to their conversion into at least two fragments of molecular mass 10 kD stable to proteinase action. Such a pattern of molecular organization appears to be common for several structurally related δ-endotoxins that belong to thekurstaki group. Entomicidal protein produced by ssp.israelensis (70 kD), which differs strongly fromalesti and otherkurstaki group δ-endotoxins, retains a similar type of molecular organization and consists of two subdomains with molecular mass of ∼35 kD. Apparently, the characteristic pattern of the δ-endotoxins' molecular structure reflects separation of functions (e.g., host recognition and toxicityper se) between domains and subdomains of these proteins.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1573-4943
    Keywords: Primary structure ; carboxypeptidase T ; carboxypeptidase family ; alignment
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract The primary structure of carobxypeptidase T—a Zn-dependent extracellular enzyme ofThermoactinomyces vulgaris—was determined from the clonedcpT gene nucleotide sequence and compared to Zn-carboxypeptidases from various organisms. The compilation and analysis of multiple alignment accompanied by consideration of available tertiary structure data have shown that in the overall spatial structure and active site arrangement CpT is similar to other enzymes constituting the Zn-carboxypeptidase family. Nine of 16 amino acid residues found to be strictly invariant are presumably located close to the active site. The preservation of His69, Glu72, Asn144, Arg145, His196, Tyr248, and Glu270 identified previously as essential catalytic site participants implicates basically the same catalytic mechanism in the Zn-carboxy-peptidase family. It is proposed that Pro205 and Asp256 should play an important role in proper S1′-pocket spatial arrangement. The comparative analysis of amino acid variations in S1′-pocket enabled us to reveal structural determinants of the Zn-carboxypeptidase primary specificity. The relatively reduced size of the pocket and negative charge of Asp253 are supposed to contribute correspondingly to A- and B-type substrate preferences of carboxypeptidase T endowed with dual primary specificity.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
  • 9
  • 10
    Publication Date: 2019
    Description: 〈p〉Characterizing the organization of the human gut microbiota is a formidable challenge given the number of possible interactions between its components. Using a statistical approach initially applied to financial markets, we measured temporally conserved covariance among bacterial taxa in the microbiota of healthy members of a Bangladeshi birth cohort sampled from 1 to 60 months of age. The results revealed an "ecogroup" of 15 covarying bacterial taxa that provide a concise description of microbiota development in healthy children from this and other low-income countries, and a means for monitoring community repair in undernourished children treated with therapeutic foods. Features of ecogroup population dynamics were recapitulated in gnotobiotic piglets as they transitioned from exclusive milk feeding to a fully weaned state consuming a representative Bangladeshi diet.〈/p〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...