ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2001-11-10
    Description: Microtubules are dynamically unstable polymers that interconvert stochastically between polymerization and depolymerization. Compared with microtubules assembled from purified tubulin, microtubules in a physiological environment polymerize faster and transit more frequently between polymerization and depolymerization. These dynamic properties are essential for the functions of the microtubule cytoskeleton during diverse cellular processes. Here, we have reconstituted the essential features of physiological microtubule dynamics by mixing three purified components: tubulin; a microtubule-stabilizing protein, XMAP215; and a microtubule-destabilizing kinesin, XKCM1. This represents an essential first step in the reconstitution of complex microtubule dynamics-dependent processes, such as chromosome segregation, from purified components.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kinoshita, K -- Arnal, I -- Desai, A -- Drechsel, D N -- Hyman, A A -- New York, N.Y. -- Science. 2001 Nov 9;294(5545):1340-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307, Dresden, Germany. kinoshita@mpi-cbg.de〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11701928" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biopolymers/metabolism ; Kinesin/isolation & purification/*metabolism ; Microscopy, Interference ; Microtubule-Associated Proteins/isolation & purification/*metabolism ; Microtubules/chemistry/*metabolism/ultrastructure ; Recombinant Proteins/metabolism ; Tubulin/isolation & purification/*metabolism ; Xenopus ; *Xenopus Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2010-04-03
    Description: Despite our rapidly growing knowledge about the human genome, we do not know all of the genes required for some of the most basic functions of life. To start to fill this gap we developed a high-throughput phenotypic screening platform combining potent gene silencing by RNA interference, time-lapse microscopy and computational image processing. We carried out a genome-wide phenotypic profiling of each of the approximately 21,000 human protein-coding genes by two-day live imaging of fluorescently labelled chromosomes. Phenotypes were scored quantitatively by computational image processing, which allowed us to identify hundreds of human genes involved in diverse biological functions including cell division, migration and survival. As part of the Mitocheck consortium, this study provides an in-depth analysis of cell division phenotypes and makes the entire high-content data set available as a resource to the community.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3108885/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3108885/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Neumann, Beate -- Walter, Thomas -- Heriche, Jean-Karim -- Bulkescher, Jutta -- Erfle, Holger -- Conrad, Christian -- Rogers, Phill -- Poser, Ina -- Held, Michael -- Liebel, Urban -- Cetin, Cihan -- Sieckmann, Frank -- Pau, Gregoire -- Kabbe, Rolf -- Wunsche, Annelie -- Satagopam, Venkata -- Schmitz, Michael H A -- Chapuis, Catherine -- Gerlich, Daniel W -- Schneider, Reinhard -- Eils, Roland -- Huber, Wolfgang -- Peters, Jan-Michael -- Hyman, Anthony A -- Durbin, Richard -- Pepperkok, Rainer -- Ellenberg, Jan -- 077192/Wellcome Trust/United Kingdom -- Wellcome Trust/United Kingdom -- England -- Nature. 2010 Apr 1;464(7289):721-7. doi: 10.1038/nature08869.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉MitoCheck Project Group, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, D-69117 Heidelberg, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20360735" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Division/*genetics ; Cell Movement/genetics ; Cell Survival/genetics ; Color ; Gene Knockdown Techniques ; Genes/genetics ; Genome, Human/*genetics ; HeLa Cells ; Humans ; Kinetics ; Mice ; Microscopy, Fluorescence/*methods ; Mitosis/genetics ; *Phenotype ; RNA Interference ; Reproducibility of Results ; Spindle Apparatus/genetics/metabolism ; Time Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2009-05-23
    Description: In sexually reproducing organisms, embryos specify germ cells, which ultimately generate sperm and eggs. In Caenorhabditis elegans, the first germ cell is established when RNA and protein-rich P granules localize to the posterior of the one-cell embryo. Localization of P granules and their physical nature remain poorly understood. Here we show that P granules exhibit liquid-like behaviors, including fusion, dripping, and wetting, which we used to estimate their viscosity and surface tension. As with other liquids, P granules rapidly dissolved and condensed. Localization occurred by a biased increase in P granule condensation at the posterior. This process reflects a classic phase transition, in which polarity proteins vary the condensation point across the cell. Such phase transitions may represent a fundamental physicochemical mechanism for structuring the cytoplasm.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Brangwynne, Clifford P -- Eckmann, Christian R -- Courson, David S -- Rybarska, Agata -- Hoege, Carsten -- Gharakhani, Jobin -- Julicher, Frank -- Hyman, Anthony A -- New York, N.Y. -- Science. 2009 Jun 26;324(5935):1729-32. doi: 10.1126/science.1172046. Epub 2009 May 21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Max Planck Institute for Molecular Cell Biology and Genetics, 01307 Dresden, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19460965" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Caenorhabditis elegans/*embryology/metabolism ; Caenorhabditis elegans Proteins/chemistry/metabolism ; Cytoplasm/metabolism/physiology/ultrastructure ; Cytoplasmic Granules/chemistry/*physiology/ultrastructure ; Embryo, Nonmammalian/*cytology/metabolism/ultrastructure ; Germ Cells/*ultrastructure ; Phase Transition ; Physicochemical Processes ; Protein-Serine-Threonine Kinases/chemistry/metabolism ; RNA Interference ; RNA, Helminth/chemistry ; Solubility ; Surface Tension ; Viscosity
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2010-04-03
    Description: Chromosome segregation and cell division are essential, highly ordered processes that depend on numerous protein complexes. Results from recent RNA interference screens indicate that the identity and composition of these protein complexes is incompletely understood. Using gene tagging on bacterial artificial chromosomes, protein localization, and tandem-affinity purification-mass spectrometry, the MitoCheck consortium has analyzed about 100 human protein complexes, many of which had not or had only incompletely been characterized. This work has led to the discovery of previously unknown, evolutionarily conserved subunits of the anaphase-promoting complex and the gamma-tubulin ring complex--large complexes that are essential for spindle assembly and chromosome segregation. The approaches we describe here are generally applicable to high-throughput follow-up analyses of phenotypic screens in mammalian cells.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2989461/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2989461/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hutchins, James R A -- Toyoda, Yusuke -- Hegemann, Bjorn -- Poser, Ina -- Heriche, Jean-Karim -- Sykora, Martina M -- Augsburg, Martina -- Hudecz, Otto -- Buschhorn, Bettina A -- Bulkescher, Jutta -- Conrad, Christian -- Comartin, David -- Schleiffer, Alexander -- Sarov, Mihail -- Pozniakovsky, Andrei -- Slabicki, Mikolaj Michal -- Schloissnig, Siegfried -- Steinmacher, Ines -- Leuschner, Marit -- Ssykor, Andrea -- Lawo, Steffen -- Pelletier, Laurence -- Stark, Holger -- Nasmyth, Kim -- Ellenberg, Jan -- Durbin, Richard -- Buchholz, Frank -- Mechtler, Karl -- Hyman, Anthony A -- Peters, Jan-Michael -- F 3407/Austrian Science Fund FWF/Austria -- New York, N.Y. -- Science. 2010 Apr 30;328(5978):593-9. doi: 10.1126/science.1181348. Epub 2010 Apr 1.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Research Institute of Molecular Pathology (IMP), Dr. Bohr-Gasse 7, A-1030 Vienna, Austria.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20360068" target="_blank"〉PubMed〈/a〉
    Keywords: Anaphase-Promoting Complex-Cyclosome ; Centrosome/metabolism ; *Chromosome Segregation ; Chromosomes, Artificial, Bacterial ; Databases, Genetic ; Genomics ; Green Fluorescent Proteins ; HeLa Cells ; Humans ; *Mitosis ; Multiprotein Complexes/*metabolism ; Open Reading Frames ; Protein Binding ; Protein Interaction Mapping ; Protein Subunits/metabolism ; RNA Interference ; Spindle Apparatus/*metabolism ; Tubulin/*metabolism ; Ubiquitin-Protein Ligase Complexes/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2013-01-12
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hyman, Anthony A -- New York, N.Y. -- Science. 2013 Jan 11;339(6116):119. doi: 10.1126/science.1234741.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23307707" target="_blank"〉PubMed〈/a〉
    Keywords: Europe ; Financing, Government ; Inventions ; National Institutes of Health (U.S.)/*economics ; *Research ; *Research Support as Topic ; United States
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2003-07-26
    Description: During unequal cell divisions a mitotic spindle is eccentrically positioned before cell cleavage. To determine the basis of the net force imbalance that causes spindle displacement in one-cell Caenorhabditis elegans embryos, we fragmented centrosomes with an ultraviolet laser. Analysis of the mean and variance of fragment speeds suggests that the force imbalance is due to a larger number of force generators pulling on astral microtubules of the posterior aster relative to the anterior aster. Moreover, activation of heterotrimeric guanine nucleotide- binding protein (Gprotein) alpha subunits is required to generate these astral forces.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Grill, Stephan W -- Howard, Jonathon -- Schaffer, Erik -- Stelzer, Ernst H K -- Hyman, Anthony A -- New York, N.Y. -- Science. 2003 Jul 25;301(5632):518-21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Max Planck Institute of Molecular Cell Biology and Genetics, D-01307 Dresden, Germany. grill@mpi-cbg.de〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12881570" target="_blank"〉PubMed〈/a〉
    Keywords: Anaphase ; Animals ; Caenorhabditis elegans/*embryology/ultrastructure ; *Cell Division ; Centrosome/physiology ; Embryo, Nonmammalian/cytology ; Fluorescent Antibody Technique, Indirect ; Heterotrimeric GTP-Binding Proteins/metabolism ; Lasers ; Mathematics ; Microtubules/*physiology ; Mitosis ; Models, Biological ; RNA Interference ; Spindle Apparatus/*physiology/ultrastructure
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2011-01-05
    Description: During mitosis, adherent animal cells undergo a drastic shape change, from essentially flat to round. Mitotic cell rounding is thought to facilitate organization within the mitotic cell and be necessary for the geometric requirements of division. However, the forces that drive this shape change remain poorly understood in the presence of external impediments, such as a tissue environment. Here we use cantilevers to track cell rounding force and volume. We show that cells have an outward rounding force, which increases as cells enter mitosis. We find that this mitotic rounding force depends both on the actomyosin cytoskeleton and the cells' ability to regulate osmolarity. The rounding force itself is generated by an osmotic pressure. However, the actomyosin cortex is required to maintain this rounding force against external impediments. Instantaneous disruption of the actomyosin cortex leads to volume increase, and stimulation of actomyosin contraction leads to volume decrease. These results show that in cells, osmotic pressure is balanced by inwardly directed actomyosin cortex contraction. Thus, by locally modulating actomyosin-cortex-dependent surface tension and globally regulating osmotic pressure, cells can control their volume, shape and mechanical properties.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Stewart, Martin P -- Helenius, Jonne -- Toyoda, Yusuke -- Ramanathan, Subramanian P -- Muller, Daniel J -- Hyman, Anthony A -- England -- Nature. 2011 Jan 13;469(7329):226-30. doi: 10.1038/nature09642. Epub 2011 Jan 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉ETH Zurich, Department of Biosystems Science and Engineering, CH-4058 Basel, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21196934" target="_blank"〉PubMed〈/a〉
    Keywords: Actomyosin/*metabolism ; Animals ; Cell Shape/drug effects/*physiology ; Cell Size/drug effects ; Cytochalasin D/pharmacology ; Cytoskeleton/drug effects/*metabolism ; HeLa Cells ; Humans ; Hydrostatic Pressure ; Microscopy, Atomic Force ; *Mitosis ; Models, Biological ; Osmolar Concentration ; Osmotic Pressure ; Prophase
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2011-10-25
    Description: In the Caenorhabditis elegans zygote, a conserved network of partitioning-defective (PAR) polarity proteins segregates into an anterior and a posterior domain, facilitated by flows of the cortical actomyosin meshwork. The physical mechanisms by which stable asymmetric PAR distributions arise from transient cortical flows remain unclear. We present evidence that PAR polarity arises from coupling of advective transport by the flowing cell cortex to a multistable PAR reaction-diffusion system. By inducing transient PAR segregation, advection serves as a mechanical trigger for the formation of a PAR pattern within an otherwise stably unpolarized system. We suggest that passive advective transport in an active and flowing material may be a general mechanism for mechanochemical pattern formation in developmental systems.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Goehring, Nathan W -- Trong, Philipp Khuc -- Bois, Justin S -- Chowdhury, Debanjan -- Nicola, Ernesto M -- Hyman, Anthony A -- Grill, Stephan W -- New York, N.Y. -- Science. 2011 Nov 25;334(6059):1137-41. doi: 10.1126/science.1208619. Epub 2011 Oct 20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22021673" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Caenorhabditis elegans/*embryology/metabolism ; Caenorhabditis elegans Proteins/genetics/*metabolism ; *Cell Polarity ; Cytoplasm/metabolism ; Diffusion ; Embryo, Nonmammalian/metabolism/*physiology ; Embryonic Development ; Protein Transport
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2012-09-01
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hyman, Anthony A -- Simons, Kai -- New York, N.Y. -- Science. 2012 Aug 31;337(6098):1047-9. doi: 10.1126/science.1223728.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Max Planck Institute for Molecular Cell Biology and Genetics, Dresden, Germany. hyman@mpi-cbg.de〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22936764" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Caenorhabditis elegans ; Cell Membrane/*chemistry ; Cytoplasm/*chemistry ; Oils/*chemistry ; *Phase Transition ; Water/*chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2015-05-16
    Description: The centrosome organizes microtubule arrays within animal cells and comprises two centrioles surrounded by an amorphous protein mass called the pericentriolar material (PCM). Despite the importance of centrosomes as microtubule-organizing centers, the mechanism and regulation of PCM assembly are not well understood. In Caenorhabditis elegans, PCM assembly requires the coiled-coil protein SPD-5. We found that recombinant SPD-5 could polymerize to form micrometer-sized porous networks in vitro. Network assembly was accelerated by two conserved regulators that control PCM assembly in vivo, Polo-like kinase-1 and SPD-2/Cep192. Only the assembled SPD-5 networks, and not unassembled SPD-5 protein, functioned as a scaffold for other PCM proteins. Thus, PCM size and binding capacity emerge from the regulated polymerization of one coiled-coil protein to form a porous network.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Woodruff, Jeffrey B -- Wueseke, Oliver -- Viscardi, Valeria -- Mahamid, Julia -- Ochoa, Stacy D -- Bunkenborg, Jakob -- Widlund, Per O -- Pozniakovsky, Andrei -- Zanin, Esther -- Bahmanyar, Shirin -- Zinke, Andrea -- Hong, Sun Hae -- Decker, Marcus -- Baumeister, Wolfgang -- Andersen, Jens S -- Oegema, Karen -- Hyman, Anthony A -- R01-GM074207/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2015 May 15;348(6236):808-12. doi: 10.1126/science.aaa3923.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany. ; Department of Cellular and Molecular Medicine, Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, CA 92093, USA. ; Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Martinsried 82152, Germany. ; Department of Clinical Biochemistry, Copenhagen University Hospital, Hvidovre 2650, Denmark. Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark. ; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA. ; Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark. ; Department of Cellular and Molecular Medicine, Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, CA 92093, USA. hyman@mpi-cbg.de koegema@ucsd.edu. ; Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany. hyman@mpi-cbg.de koegema@ucsd.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25977552" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Caenorhabditis elegans/*genetics/*metabolism ; Caenorhabditis elegans Proteins/chemistry/genetics/*metabolism ; Cell Cycle Proteins/chemistry/genetics/*metabolism ; Centrosome/*metabolism/ultrasonography ; Metabolic Networks and Pathways ; Phosphorylation ; Polymerization ; Protein Binding ; Protein Structure, Tertiary ; Protein-Serine-Threonine Kinases/*metabolism ; Proto-Oncogene Proteins/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...