ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1
    Publication Date: 2016-10-01
    Print ISSN: 0920-4105
    Electronic ISSN: 1873-4715
    Topics: Chemistry and Pharmacology , Geosciences , Process Engineering, Biotechnology, Nutrition Technology
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-03-06
    Description: Much effort has been made to enhance the toughness of poly (lactic acid) (PLA) to broaden its possible range of usage in technical applications. In this work, the compatibility of PLA with a partly bio-based ethylene-propylene-diene-rubber (EPDM) through reactive extrusion was investigated. The concentration of EPDM in the PLA matrix was in the range of up to 20%. The reactive extrusion was carried out in a conventional twin-screw extruder. Contact angle measurements were performed to calculate the interfacial tension and thus the compatibility between the phases. The thermal and mechanical properties as well as the phase morphology of the blends were characterized. A copolymer of poly (ethylene-co-methyl acrylate-co-glycidyl methacrylate) (EMAGMA) was used as compatibilizer, which leads to a significant reduction in the particle size of the dispersed rubber phase when compared with the blends without this copolymer. The use of EMAGMA combined with soybean oil (SBO) and a radical initiator enhances the elongation at break of the compound. The results indicate that the reduction of the particle size of the dispersed phase obtained with the compatibilizer alone is not sufficient to improve the mechanical properties of the blend system. The induced radical reactions also influenced the mechanical properties of the blend significantly.
    Electronic ISSN: 2073-4360
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Process Engineering, Biotechnology, Nutrition Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-11-25
    Description: For some applications of bioplastics like food packaging or medical devices, applying additives can be necessary to avoid microbial activity and hinder biofilm or fouling formation. A currently promising additive is chitosan (CS), the deacetylated form of the biogenic scaffolding material chitin. Due to its hydrophilicity, chitosan is not compatible with most of the thermoplastic bio-based polymers like poly(lactic acid) (PLA) or polyhydroxyalkanoates (PHA). In this work, compatibilization between chitosan and two selected bio-based polyesters, PLA and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), was enhanced by grafting maleic anhydride (MAH) and glycidyl methacrylate (GMA), respectively, onto polymer chains using peroxide. The success of grafting was confirmed via titration methods. The effects of grafting agent and peroxide concentrations on grafting reaction and the physical and thermal properties of the functionalized polyesters were investigated. Compounding of the functionalized polyesters with different weight portions of chitosan was accomplished in a discontinuous internal mixer by in-situ functionalization, followed by blending with chitosan. The titration method, scanning electron microscopy, DSC, FTIR and mechanical characterization of the composites showed good interfacial adhesion and suggest the formation of covalent bonds between functional groups of the polyesters and chitosan, especially for the samples functionalized with GMA. The molecular weights (Mw) of the samples showed a change in the molecular weight related to the thermal degradation of the sample. The Mw of the samples grafted with MAH are lower than those functionalized with GMA. Furthermore, integration of chitosan into non-functionalized PLA polymer matrix showed a nucleating effect, while for PHBV, the increase of crystallinity with the content of chitosan was only observed for grafted PHBV.
    Electronic ISSN: 2073-4360
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Process Engineering, Biotechnology, Nutrition Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...