ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2008-06-13
    Description: Animals from flies to humans are able to distinguish subtle gradations in temperature and show strong temperature preferences. Animals move to environments of optimal temperature and some manipulate the temperature of their surroundings, as humans do using clothing and shelter. Despite the ubiquitous influence of environmental temperature on animal behaviour, the neural circuits and strategies through which animals select a preferred temperature remain largely unknown. Here we identify a small set of warmth-activated anterior cell (AC) neurons located in the Drosophila brain, the function of which is critical for preferred temperature selection. AC neuron activation occurs just above the fly's preferred temperature and depends on dTrpA1, an ion channel that functions as a molecular sensor of warmth. Flies that selectively express dTrpA1 in the AC neurons select normal temperatures, whereas flies in which dTrpA1 function is reduced or eliminated choose warmer temperatures. This internal warmth-sensing pathway promotes avoidance of slightly elevated temperatures and acts together with a distinct pathway for cold avoidance to set the fly's preferred temperature. Thus, flies select a preferred temperature by using a thermal sensing pathway tuned to trigger avoidance of temperatures that deviate even slightly from the preferred temperature. This provides a potentially general strategy for robustly selecting a narrow temperature range optimal for survival.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2730888/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2730888/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hamada, Fumika N -- Rosenzweig, Mark -- Kang, Kyeongjin -- Pulver, Stefan R -- Ghezzi, Alfredo -- Jegla, Timothy J -- Garrity, Paul A -- P01 NS044232/NS/NINDS NIH HHS/ -- P01 NS044232-060002/NS/NINDS NIH HHS/ -- P01 NS044232-070002/NS/NINDS NIH HHS/ -- P30 NS045713/NS/NINDS NIH HHS/ -- P30 NS045713-069006/NS/NINDS NIH HHS/ -- P30 NS045713S10/NS/NINDS NIH HHS/ -- R01 EY013874/EY/NEI NIH HHS/ -- R01 EY013874-06/EY/NEI NIH HHS/ -- R01 EY13874/EY/NEI NIH HHS/ -- R01 MH067284/MH/NIMH NIH HHS/ -- R01 MH067284-05/MH/NIMH NIH HHS/ -- RR16780/RR/NCRR NIH HHS/ -- England -- Nature. 2008 Jul 10;454(7201):217-20. doi: 10.1038/nature07001. Epub 2008 Jun 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉National Center for Behavioral Genomics, Volen Center for Complex Systems, Biology Department, Brandeis University MS-008, 415 South Street, Waltham, Massachusetts 02454, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18548007" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Avoidance Learning ; Body Temperature ; Choice Behavior/*physiology ; Drosophila Proteins/genetics/*metabolism ; Drosophila melanogaster/growth & development/*physiology ; Female ; Larva ; Molecular Sequence Data ; Neurons/metabolism ; Oocytes/metabolism ; TRPC Cation Channels/genetics/*metabolism ; *Temperature ; Xenopus laevis
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2010-03-20
    Description: Chemical nociception, the detection of tissue-damaging chemicals, is important for animal survival and causes human pain and inflammation, but its evolutionary origins are largely unknown. Reactive electrophiles are a class of noxious compounds humans find pungent and irritating, such as allyl isothiocyanate (in wasabi) and acrolein (in cigarette smoke). Diverse animals, from insects to humans, find reactive electrophiles aversive, but whether this reflects conservation of an ancient sensory modality has been unclear. Here we identify the molecular basis of reactive electrophile detection in flies. We demonstrate that Drosophila TRPA1 (Transient receptor potential A1), the Drosophila melanogaster orthologue of the human irritant sensor, acts in gustatory chemosensors to inhibit reactive electrophile ingestion. We show that fly and mosquito TRPA1 orthologues are molecular sensors of electrophiles, using a mechanism conserved with vertebrate TRPA1s. Phylogenetic analyses indicate that invertebrate and vertebrate TRPA1s share a common ancestor that possessed critical characteristics required for electrophile detection. These findings support emergence of TRPA1-based electrophile detection in a common bilaterian ancestor, with widespread conservation throughout vertebrate and invertebrate evolution. Such conservation contrasts with the evolutionary divergence of canonical olfactory and gustatory receptors and may relate to electrophile toxicity. We propose that human pain perception relies on an ancient chemical sensor conserved across approximately 500 million years of animal evolution.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2845738/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2845738/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kang, Kyeongjin -- Pulver, Stefan R -- Panzano, Vincent C -- Chang, Elaine C -- Griffith, Leslie C -- Theobald, Douglas L -- Garrity, Paul A -- P01 NS044232/NS/NINDS NIH HHS/ -- P01 NS044232-060002/NS/NINDS NIH HHS/ -- P01 NS044232-070002/NS/NINDS NIH HHS/ -- P01 NS044232-080002/NS/NINDS NIH HHS/ -- R01 MH067284/MH/NIMH NIH HHS/ -- R01 MH067284-06A1/MH/NIMH NIH HHS/ -- R01 MH067284-07/MH/NIMH NIH HHS/ -- R21 MH080206/MH/NIMH NIH HHS/ -- R21 MH080206-01/MH/NIMH NIH HHS/ -- R21 MH080206-02/MH/NIMH NIH HHS/ -- England -- Nature. 2010 Mar 25;464(7288):597-600. doi: 10.1038/nature08848. Epub 2010 Mar 17.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉National Center for Behavioral Genomics, Waltham, Massachusetts 02454, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20237474" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Conserved Sequence ; Drosophila Proteins/chemistry/genetics/*metabolism ; Drosophila melanogaster/classification/genetics/*metabolism ; Evolution, Molecular ; Gene Expression Profiling ; Gene Expression Regulation ; Humans ; Molecular Sequence Data ; Mutation ; Phylogeny ; Sensory Receptor Cells/*metabolism ; TRPC Cation Channels/chemistry/genetics/*metabolism ; Taste Perception/physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-07-23
    Description: Fluorescent calcium sensors are widely used to image neural activity. Using structure-based mutagenesis and neuron-based screening, we developed a family of ultrasensitive protein calcium sensors (GCaMP6) that outperformed other sensors in cultured neurons and in zebrafish, flies and mice in vivo. In layer 2/3 pyramidal neurons of the mouse visual cortex, GCaMP6 reliably detected single action potentials in neuronal somata and orientation-tuned synaptic calcium transients in individual dendritic spines. The orientation tuning of structurally persistent spines was largely stable over timescales of weeks. Orientation tuning averaged across spine populations predicted the tuning of their parent cell. Although the somata of GABAergic neurons showed little orientation tuning, their dendrites included highly tuned dendritic segments (5-40-microm long). GCaMP6 sensors thus provide new windows into the organization and dynamics of neural circuits over multiple spatial and temporal scales.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3777791/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3777791/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chen, Tsai-Wen -- Wardill, Trevor J -- Sun, Yi -- Pulver, Stefan R -- Renninger, Sabine L -- Baohan, Amy -- Schreiter, Eric R -- Kerr, Rex A -- Orger, Michael B -- Jayaraman, Vivek -- Looger, Loren L -- Svoboda, Karel -- Kim, Douglas S -- T32 GM008042/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2013 Jul 18;499(7458):295-300. doi: 10.1038/nature12354.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Janelia Farm Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, Virginia 20147, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23868258" target="_blank"〉PubMed〈/a〉
    Keywords: *Action Potentials ; Animals ; Calcium/metabolism ; Calcium-Binding Proteins/*chemistry/genetics ; Cells, Cultured ; Dendritic Spines/metabolism ; Fluorescent Dyes/*chemistry ; GABAergic Neurons/metabolism ; Luminescent Proteins/*chemistry/genetics ; Mice ; Molecular Imaging ; Mutagenesis ; Protein Engineering ; Pyramidal Cells/metabolism/physiology ; Visual Cortex/cytology/physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...