ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2014-02-26
    Description: China has the largest afforested area in the world (∼62 million hectares in 2008), and these forests are carbon sinks. The climatic effect of these new forests depends on how radiant and turbulent energy fluxes over these plantations modify surface temperature. For instance, a lower albedo may cause warming, which...
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019
    Description: 〈p〉Substantial progress has been made in understanding how Eurasian snow cover variabilities affect the Indian summer monsoon, but the snow-monsoon relationship in a warming atmosphere remains controversial. Using long-term observational snow and rainfall data (1967–2015), we identified that the widely recognized inverse relationship of central Eurasian spring snow cover with the Indian summer monsoon rainfall has disappeared since 1990. The apparent loss of this negative correlation is mainly due to the central Eurasian spring snow cover no longer regulating the summer mid-tropospheric temperature over the Iranian Plateau and surroundings, and hence the land-ocean thermal contrast after 1990. A reduced lagged snow-hydrological effect, resulting from a warming-induced decline in spring snow cover, constitutes the possible mechanism for the breakdown of the snow-air temperature connection after 1990. Our results suggest that, in a changing climate, Eurasian spring snow cover may not be a faithful predictor of the Indian summer monsoon rainfall.〈/p〉
    Electronic ISSN: 2375-2548
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-08-03
    Description: GPR56, an orphan G protein-coupled receptor (GPCR) from the family of adhesion GPCRs, plays an indispensable role in cortical development and lamination. Mutations in the GPR56 gene cause a malformed cerebral cortex in both humans and mice that resembles cobblestone lissencephaly, which is characterized by overmigration of neurons beyond the pial basement membrane. However, the molecular mechanisms through which GPR56 regulates cortical development remain elusive due to the unknown status of its ligand. Here we identify collagen, type III, alpha-1 (gene symbol Col3a1) as the ligand of GPR56 through an in vitro biotinylation/proteomics approach. Further studies demonstrated that Col3a1 null mutant mice exhibit overmigration of neurons beyond the pial basement membrane and a cobblestone-like cortical malformation similar to the phenotype seen in Gpr56 null mutant mice. Functional studies suggest that the interaction of collagen III with its receptor GPR56 inhibits neural migration in vitro. As for intracellular signaling, GPR56 couples to the Gα12/13 family of G proteins and activates RhoA pathway upon ligand binding. Thus, collagen III regulates the proper lamination of the cerebral cortex by acting as the major ligand of GPR56 in the developing brain.
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2001-09-08
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fang, J -- Piao, S -- Tang, Z -- Peng, C -- Ji, W -- New York, N.Y. -- Science. 2001 Sep 7;293(5536):1723.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Urban and, Environmental Sciences and, Key Laboratory for Earth Surface Processes, Ministry of Education, Peking University, Beijing 100871, China. jyfang@urban.pku.edu.cn〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11546840" target="_blank"〉PubMed〈/a〉
    Keywords: *Biomass ; China ; *Climate ; Crops, Agricultural/growth & development ; Desert Climate ; *Ecosystem ; Greenhouse Effect ; North America ; Poaceae/growth & development ; *Rain ; Sample Size ; Statistics as Topic ; Time Factors ; Trees/growth & development
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2008-01-04
    Description: The carbon balance of terrestrial ecosystems is particularly sensitive to climatic changes in autumn and spring, with spring and autumn temperatures over northern latitudes having risen by about 1.1 degrees C and 0.8 degrees C, respectively, over the past two decades. A simultaneous greening trend has also been observed, characterized by a longer growing season and greater photosynthetic activity. These observations have led to speculation that spring and autumn warming could enhance carbon sequestration and extend the period of net carbon uptake in the future. Here we analyse interannual variations in atmospheric carbon dioxide concentration data and ecosystem carbon dioxide fluxes. We find that atmospheric records from the past 20 years show a trend towards an earlier autumn-to-winter carbon dioxide build-up, suggesting a shorter net carbon uptake period. This trend cannot be explained by changes in atmospheric transport alone and, together with the ecosystem flux data, suggest increasing carbon losses in autumn. We use a process-based terrestrial biosphere model and satellite vegetation greenness index observations to investigate further the observed seasonal response of northern ecosystems to autumnal warming. We find that both photosynthesis and respiration increase during autumn warming, but the increase in respiration is greater. In contrast, warming increases photosynthesis more than respiration in spring. Our simulations and observations indicate that northern terrestrial ecosystems may currently lose carbon dioxide in response to autumn warming, with a sensitivity of about 0.2 PgC degrees C(-1), offsetting 90% of the increased carbon dioxide uptake during spring. If future autumn warming occurs at a faster rate than in spring, the ability of northern ecosystems to sequester carbon may be diminished earlier than previously suggested.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Piao, Shilong -- Ciais, Philippe -- Friedlingstein, Pierre -- Peylin, Philippe -- Reichstein, Markus -- Luyssaert, Sebastiaan -- Margolis, Hank -- Fang, Jingyun -- Barr, Alan -- Chen, Anping -- Grelle, Achim -- Hollinger, David Y -- Laurila, Tuomas -- Lindroth, Anders -- Richardson, Andrew D -- Vesala, Timo -- England -- Nature. 2008 Jan 3;451(7174):49-52. doi: 10.1038/nature06444.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉LSCE, UMR CEA-CNRS, Batiment 709, CE, L'Orme des Merisiers, F-91191 Gif-sur-Yvette, France. slpiao@lsce.ipsl.fr〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18172494" target="_blank"〉PubMed〈/a〉
    Keywords: Atmosphere/chemistry ; Biomass ; Carbon Dioxide/analysis/*metabolism ; Cell Respiration ; *Ecosystem ; Fossil Fuels ; Geography ; Greenhouse Effect ; History, 20th Century ; History, 21st Century ; Oceans and Seas ; Photosynthesis ; Plant Transpiration ; Plants/metabolism ; Rain ; *Seasons ; Soil/analysis ; *Temperature ; Water/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2009-04-28
    Description: Global terrestrial ecosystems absorbed carbon at a rate of 1-4 Pg yr(-1) during the 1980s and 1990s, offsetting 10-60 per cent of the fossil-fuel emissions. The regional patterns and causes of terrestrial carbon sources and sinks, however, remain uncertain. With increasing scientific and political interest in regional aspects of the global carbon cycle, there is a strong impetus to better understand the carbon balance of China. This is not only because China is the world's most populous country and the largest emitter of fossil-fuel CO(2) into the atmosphere, but also because it has experienced regionally distinct land-use histories and climate trends, which together control the carbon budget of its ecosystems. Here we analyse the current terrestrial carbon balance of China and its driving mechanisms during the 1980s and 1990s using three different methods: biomass and soil carbon inventories extrapolated by satellite greenness measurements, ecosystem models and atmospheric inversions. The three methods produce similar estimates of a net carbon sink in the range of 0.19-0.26 Pg carbon (PgC) per year, which is smaller than that in the conterminous United States but comparable to that in geographic Europe. We find that northeast China is a net source of CO(2) to the atmosphere owing to overharvesting and degradation of forests. By contrast, southern China accounts for more than 65 per cent of the carbon sink, which can be attributed to regional climate change, large-scale plantation programmes active since the 1980s and shrub recovery. Shrub recovery is identified as the most uncertain factor contributing to the carbon sink. Our data and model results together indicate that China's terrestrial ecosystems absorbed 28-37 per cent of its cumulated fossil carbon emissions during the 1980s and 1990s.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Piao, Shilong -- Fang, Jingyun -- Ciais, Philippe -- Peylin, Philippe -- Huang, Yao -- Sitch, Stephen -- Wang, Tao -- England -- Nature. 2009 Apr 23;458(7241):1009-13. doi: 10.1038/nature07944.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Ecology, College of Urban and Environmental Science, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing 100871, China. slpiao@pku.edu.cn〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19396142" target="_blank"〉PubMed〈/a〉
    Keywords: Atmosphere/chemistry ; Biomass ; Carbon/analysis/*metabolism ; Carbon Dioxide/analysis/chemistry/metabolism ; China ; *Ecosystem ; Forestry/history ; Fossil Fuels/*history ; History, 20th Century ; Soil/analysis ; Trees/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2015-09-30
    Description: Earlier spring leaf unfolding is a frequently observed response of plants to climate warming. Many deciduous tree species require chilling for dormancy release, and warming-related reductions in chilling may counteract the advance of leaf unfolding in response to warming. Empirical evidence for this, however, is limited to saplings or twigs in climate-controlled chambers. Using long-term in situ observations of leaf unfolding for seven dominant European tree species at 1,245 sites, here we show that the apparent response of leaf unfolding to climate warming (ST, expressed in days advance of leaf unfolding per degrees C warming) has significantly decreased from 1980 to 2013 in all monitored tree species. Averaged across all species and sites, ST decreased by 40% from 4.0 +/- 1.8 days degrees C(-1) during 1980-1994 to 2.3 +/- 1.6 days degrees C(-1) during 1999-2013. The declining ST was also simulated by chilling-based phenology models, albeit with a weaker decline (24-30%) than observed in situ. The reduction in ST is likely to be partly attributable to reduced chilling. Nonetheless, other mechanisms may also have a role, such as 'photoperiod limitation' mechanisms that may become ultimately limiting when leaf unfolding dates occur too early in the season. Our results provide empirical evidence for a declining ST, but also suggest that the predicted strong winter warming in the future may further reduce ST and therefore result in a slowdown in the advance of tree spring phenology.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fu, Yongshuo H -- Zhao, Hongfang -- Piao, Shilong -- Peaucelle, Marc -- Peng, Shushi -- Zhou, Guiyun -- Ciais, Philippe -- Huang, Mengtian -- Menzel, Annette -- Penuelas, Josep -- Song, Yang -- Vitasse, Yann -- Zeng, Zhenzhong -- Janssens, Ivan A -- England -- Nature. 2015 Oct 1;526(7571):104-7. doi: 10.1038/nature15402. Epub 2015 Sep 23.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China. ; Centre of Excellence PLECO (Plant and Vegetation Ecology), Department of Biology, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium. ; Key Laboratory of Alpine Ecology and Biodiversity, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100085, China. ; Center for Excellence in Tibetan Earth Science, Chinese Academy of Sciences, Beijing 100085, China. ; Laboratoire des Sciences du Climat et de l'Environnement, CEA CNRS UVSQ, Gif-sur-Yvette 91190, France. ; School of Resources and Environment, University of Electronic Science and Technology of China, Chengdu 611731, China. ; Ecoclimatology, Technische Universitat Munchen, Freising 85354, Germany. ; Technische Universitat Munchen, Institute for Advanced Study, Lichtenbergstrasse 2a, 85748 Garching, Germany. ; CREAF, Cerdanyola del Valles, Barcelona 08193, Catalonia, Spain. ; CSIC, Global Ecology Unit CREAF-CSIC-UAB, Cerdanyola del Valles, Barcelona 08193, Catalonia, Spain. ; Department of Atmospheric Sciences, University of Illinois, Urbana, Illinois 61801, USA. ; University of Neuchatel, Institute of Geography, Neuchatel 2000, Switzerland. ; WSL Swiss Federal Institute for Forest, Snow and Landscape Research, Neuchatel 2000, Switzerland. ; WSL Institute for Snow and Avalanche Research SLF, Group Mountain Ecosystems, Davos 7260, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26416746" target="_blank"〉PubMed〈/a〉
    Keywords: Cold Temperature ; Europe ; *Global Warming ; Models, Biological ; Photoperiod ; Plant Leaves/*growth & development ; *Seasons ; Time Factors ; Trees/*growth & development
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2011-07-19
    Description: The terrestrial carbon sink has been large in recent decades, but its size and location remain uncertain. Using forest inventory data and long-term ecosystem carbon studies, we estimate a total forest sink of 2.4 +/- 0.4 petagrams of carbon per year (Pg C year(-1)) globally for 1990 to 2007. We also estimate a source of 1.3 +/- 0.7 Pg C year(-1) from tropical land-use change, consisting of a gross tropical deforestation emission of 2.9 +/- 0.5 Pg C year(-1) partially compensated by a carbon sink in tropical forest regrowth of 1.6 +/- 0.5 Pg C year(-1). Together, the fluxes comprise a net global forest sink of 1.1 +/- 0.8 Pg C year(-1), with tropical estimates having the largest uncertainties. Our total forest sink estimate is equivalent in magnitude to the terrestrial sink deduced from fossil fuel emissions and land-use change sources minus ocean and atmospheric sinks.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pan, Yude -- Birdsey, Richard A -- Fang, Jingyun -- Houghton, Richard -- Kauppi, Pekka E -- Kurz, Werner A -- Phillips, Oliver L -- Shvidenko, Anatoly -- Lewis, Simon L -- Canadell, Josep G -- Ciais, Philippe -- Jackson, Robert B -- Pacala, Stephen W -- McGuire, A David -- Piao, Shilong -- Rautiainen, Aapo -- Sitch, Stephen -- Hayes, Daniel -- New York, N.Y. -- Science. 2011 Aug 19;333(6045):988-93. doi: 10.1126/science.1201609. Epub 2011 Jul 14.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉U.S. Department of Agriculture Forest Service, Newtown Square, PA 19073, USA. ypan@fs.fed.us〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21764754" target="_blank"〉PubMed〈/a〉
    Keywords: Atmosphere ; Biomass ; Carbon/analysis ; Carbon Dioxide/analysis ; *Carbon Sequestration ; Climate Change ; Conservation of Natural Resources ; *Ecosystem ; *Trees ; Tropical Climate
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2014-04-25
    Description: Tropical forests are global epicentres of biodiversity and important modulators of climate change, and are mainly constrained by rainfall patterns. The severe short-term droughts that occurred recently in Amazonia have drawn attention to the vulnerability of tropical forests to climatic disturbances. The central African rainforests, the second-largest on Earth, have experienced a long-term drying trend whose impacts on vegetation dynamics remain mostly unknown because in situ observations are very limited. The Congolese forest, with its drier conditions and higher percentage of semi-evergreen trees, may be more tolerant to short-term rainfall reduction than are wetter tropical forests, but for a long-term drought there may be critical thresholds of water availability below which higher-biomass, closed-canopy forests transition to more open, lower-biomass forests. Here we present observational evidence for a widespread decline in forest greenness over the past decade based on analyses of satellite data (optical, thermal, microwave and gravity) from several independent sensors over the Congo basin. This decline in vegetation greenness, particularly in the northern Congolese forest, is generally consistent with decreases in rainfall, terrestrial water storage, water content in aboveground woody and leaf biomass, and the canopy backscatter anomaly caused by changes in structure and moisture in upper forest layers. It is also consistent with increases in photosynthetically active radiation and land surface temperature. These multiple lines of evidence indicate that this large-scale vegetation browning, or loss of photosynthetic capacity, may be partially attributable to the long-term drying trend. Our results suggest that a continued gradual decline of photosynthetic capacity and moisture content driven by the persistent drying trend could alter the composition and structure of the Congolese forest to favour the spread of drought-tolerant species.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhou, Liming -- Tian, Yuhong -- Myneni, Ranga B -- Ciais, Philippe -- Saatchi, Sassan -- Liu, Yi Y -- Piao, Shilong -- Chen, Haishan -- Vermote, Eric F -- Song, Conghe -- Hwang, Taehee -- England -- Nature. 2014 May 1;509(7498):86-90. doi: 10.1038/nature13265. Epub 2014 Apr 23.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Atmospheric and Environmental Sciences, University at Albany, State University of New York (SUNY), Albany, New York 12222, USA. ; I. M. Systems Group (IMSG), National Oceanic and Atmospheric Administration/National Environmental Satellite, Data, and Information Service/The Center for Satellite Applications and Research (NOAA/NESDIS/STAR), 5830 University Research Court, College Park, Maryland 20740, USA. ; Department of Earth and Environment, Boston University, Boston, Massachusetts 02215, USA. ; Laboratoire des Sciences du Climat et de l'Environnement (LSCE), CEA-CNRS-UVSQ, 91191 Gif sur Yvette Cedex, France. ; Jet Propulsion Laboratory, Pasadena, California 91109, USA. ; ARC Centre of Excellence for Climate Systems Science & Climate Change Research Centre, University of New South Wales, Sydney, New South Wales 2052, Australia. ; Department of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China. ; Key Laboratory of Meteorological Disaster, Ministry of Education, Nanjing University of Information Science and Technology, Nanjing 210044, China. ; NASA Goddard Space Flight Center, Code 619, Greenbelt, Maryland 20771, USA. ; 1] Department of Geography, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 29599, USA [2] School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, Anhui 230036, China. ; Institute for the Environment, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 29599, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24759324" target="_blank"〉PubMed〈/a〉
    Keywords: Acclimatization ; Biodiversity ; Biomass ; Chlorophyll/analysis/metabolism ; Climate Change/*statistics & numerical data ; Congo ; Droughts/statistics & numerical data ; Photosynthesis ; Plant Leaves/*growth & development/metabolism ; *Rain ; Satellite Imagery ; Seasons ; Temperature ; Time Factors ; Trees/*growth & development/metabolism ; *Tropical Climate ; Water/analysis/metabolism ; Wood/growth & development/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2010-09-03
    Description: China is the world's most populous country and a major emitter of greenhouse gases. Consequently, much research has focused on China's influence on climate change but somewhat less has been written about the impact of climate change on China. China experienced explosive economic growth in recent decades, but with only 7% of the world's arable land available to feed 22% of the world's population, China's economy may be vulnerable to climate change itself. We find, however, that notwithstanding the clear warming that has occurred in China in recent decades, current understanding does not allow a clear assessment of the impact of anthropogenic climate change on China's water resources and agriculture and therefore China's ability to feed its people. To reach a more definitive conclusion, future work must improve regional climate simulations-especially of precipitation-and develop a better understanding of the managed and unmanaged responses of crops to changes in climate, diseases, pests and atmospheric constituents.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Piao, Shilong -- Ciais, Philippe -- Huang, Yao -- Shen, Zehao -- Peng, Shushi -- Li, Junsheng -- Zhou, Liping -- Liu, Hongyan -- Ma, Yuecun -- Ding, Yihui -- Friedlingstein, Pierre -- Liu, Chunzhen -- Tan, Kun -- Yu, Yongqiang -- Zhang, Tianyi -- Fang, Jingyun -- England -- Nature. 2010 Sep 2;467(7311):43-51. doi: 10.1038/nature09364.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Ecology, College of Urban and Environmental Science, Key Laboratory for Earth Surface Processes of the Ministry of Education, and Center of Climate Research, Peking University, Beijing 100871, China. slpiao@pku.edu.cn〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20811450" target="_blank"〉PubMed〈/a〉
    Keywords: Agriculture ; China ; *Climate Change ; Conservation of Natural Resources ; *Economic Development ; Population Dynamics ; Water
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...