ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2017-08-01
    Description: Hydrogen embrittlement is a serious problem in high-strength steels. Drawn pearlitic steel shows excellent resistance to hydrogen embrittlement despite its high strength, and aging treatment at a low temperature can simultaneously improve its strength and hydrogen-embrittlement resistance. To clarify the mechanism for this we have used thermal desorption analysis (TDA) and the newly developed precession electron diffraction analysis method in the transmission electron microscope. After aging at 100 °C for 10 min, the amount of hydrogen seen amount on the TDA curve reduced at around 100 °C. In contrast, when aging was performed at 300 °C, the hydrogen amount further reduced at around 100 °C and the unevenly deformed lamellar ferrite zone was locally recovered. For the samples that were aged at the low temperature, we confirmed that their yield strength and relaxation stress ratios increased simultaneously with improvement in the hydrogen-embrittlement property. We infer that segr...
    Print ISSN: 1757-8981
    Electronic ISSN: 1757-899X
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-12-24
    Description: Although DNA methylation is considered to play an important role during myogenic differentiation, chronological alterations in DNA methylation and gene expression patterns in this process have been poorly understood. Using the Infinium HumanMethylation450 BeadChip array, we obtained a chronological profile of the genome-wide DNA methylation status in a human myoblast differentiation model, where myoblasts were cultured in low-serum medium to stimulate myogenic differentiation. As the differentiation of the myoblasts proceeded, their global DNA methylation level increased and their methylation patterns became more distinct from those of mesenchymal stem cells. Gene ontology analysis revealed that genes whose promoter region was hypermethylated upon myoblast differentiation were highly significantly enriched with muscle-related terms such as ‘muscle contraction’ and ‘muscle system process’. Sequence motif analysis identified 8-bp motifs somewhat similar to the binding motifs of ID4 and ZNF238 to be most significantly enriched in hypermethylated promoter regions. ID4 and ZNF238 have been shown to be critical transcriptional regulators of muscle-related genes during myogenic differentiation. An integrated analysis of DNA methylation and gene expression profiles revealed that de novo DNA methylation of non-CpG island (CGI) promoters was more often associated with transcriptional down-regulation than that of CGI promoters. These results strongly suggest the existence of an epigenetic mechanism in which DNA methylation modulates the functions of key transcriptional factors to coordinately regulate muscle-related genes during myogenic differentiation.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-03-18
    Description: Vertebrates have a unique 3D body shape in which correct tissue and organ shape and alignment are essential for function. For example, vision requires the lens to be centred in the eye cup which must in turn be correctly positioned in the head. Tissue morphogenesis depends on force generation, force transmission through the tissue, and response of tissues and extracellular matrix to force. Although a century ago D'Arcy Thompson postulated that terrestrial animal body shapes are conditioned by gravity, there has been no animal model directly demonstrating how the aforementioned mechano-morphogenetic processes are coordinated to generate a body shape that withstands gravity. Here we report a unique medaka fish (Oryzias latipes) mutant, hirame (hir), which is sensitive to deformation by gravity. hir embryos display a markedly flattened body caused by mutation of YAP, a nuclear executor of Hippo signalling that regulates organ size. We show that actomyosin-mediated tissue tension is reduced in hir embryos, leading to tissue flattening and tissue misalignment, both of which contribute to body flattening. By analysing YAP function in 3D spheroids of human cells, we identify the Rho GTPase activating protein ARHGAP18 as an effector of YAP in controlling tissue tension. Together, these findings reveal a previously unrecognised function of YAP in regulating tissue shape and alignment required for proper 3D body shape. Understanding this morphogenetic function of YAP could facilitate the use of embryonic stem cells to generate complex organs requiring correct alignment of multiple tissues.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4720436/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4720436/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Porazinski, Sean -- Wang, Huijia -- Asaoka, Yoichi -- Behrndt, Martin -- Miyamoto, Tatsuo -- Morita, Hitoshi -- Hata, Shoji -- Sasaki, Takashi -- Krens, S F Gabriel -- Osada, Yumi -- Asaka, Satoshi -- Momoi, Akihiro -- Linton, Sarah -- Miesfeld, Joel B -- Link, Brian A -- Senga, Takeshi -- Castillo-Morales, Atahualpa -- Urrutia, Araxi O -- Shimizu, Nobuyoshi -- Nagase, Hideaki -- Matsuura, Shinya -- Bagby, Stefan -- Kondoh, Hisato -- Nishina, Hiroshi -- Heisenberg, Carl-Philipp -- Furutani-Seiki, Makoto -- P30 EY001931/EY/NEI NIH HHS/ -- R01 EY014167/EY/NEI NIH HHS/ -- R01 EY016060/EY/NEI NIH HHS/ -- R01EY014167/EY/NEI NIH HHS/ -- Medical Research Council/United Kingdom -- England -- Nature. 2015 May 14;521(7551):217-21. doi: 10.1038/nature14215. Epub 2015 Mar 16.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, UK. ; Department of Developmental and Regenerative Biology, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan. ; IST Austria, Am Campus 1, A-3400 Klosterneuburg, Austria. ; Department of Genetics and Cell Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima 734-8553, Japan. ; Department of Molecular Biology, School of Medicine, Keio University, Tokyo 160-8582, Japan. ; Japan Science and Technology Agency (JST), ERATO-SORST Kondoh Differentiation Signaling Project, Kyoto 606-8305, Japan. ; Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA. ; Division of Cancer Biology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan. ; Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford OX3 7FY, UK. ; 1] Japan Science and Technology Agency (JST), ERATO-SORST Kondoh Differentiation Signaling Project, Kyoto 606-8305, Japan [2] Graduate School of Frontier Bioscience, Osaka University, Osaka 565-0871, Japan [3] Faculty of Life Sciences, Kyoto Sangyo University, Kyoto 603-8555, Japan. ; 1] Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, UK [2] Japan Science and Technology Agency (JST), ERATO-SORST Kondoh Differentiation Signaling Project, Kyoto 606-8305, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25778702" target="_blank"〉PubMed〈/a〉
    Keywords: Actomyosin/metabolism ; Adaptor Proteins, Signal Transducing/genetics/metabolism ; Animals ; Body Size/*genetics ; Embryo, Nonmammalian/anatomy & histology/embryology/metabolism ; Fish Proteins/genetics/*metabolism ; GTPase-Activating Proteins/metabolism ; Genes, Essential/genetics ; Gravitation ; Humans ; Morphogenesis/*genetics ; Mutation/genetics ; Organ Size/genetics ; Oryzias/*anatomy & histology/*embryology/genetics ; Phenotype ; Protein-Serine-Threonine Kinases/genetics/metabolism ; Signal Transduction ; Spheroids, Cellular/cytology/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1990-03-09
    Description: The T cell antigen receptor (TCR) delta gene is located within the TCR alpha locus. A T cell-specific transcriptional enhancer, distinct from the TCR alpha enhancer, has been identified within the J delta 3-C delta intron of the human T cell receptor delta gene. This enhancer activates transcription from the V delta 1 and V delta 3 promoters as well as from heterologous promoters. Enhancer activity has been localized to a 250-bp region that contains multiple binding sites for nuclear proteins. Thus, transcriptional control of the TCR delta and TCR alpha genes is mediated by distinct regulatory elements.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Redondo, J M -- Hata, S -- Brocklehurst, C -- Krangel, M S -- R01-GM41052/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1990 Mar 9;247(4947):1225-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Tumor Virology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2156339" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Binding Sites ; Cell Line ; Chloramphenicol O-Acetyltransferase/genetics ; DNA Restriction Enzymes ; Deoxyribonuclease I ; Enhancer Elements, Genetic/*genetics ; Gene Rearrangement ; Gene Rearrangement, alpha-Chain T-Cell Antigen Receptor ; Humans ; Molecular Sequence Data ; Mutation ; Nuclear Proteins/metabolism ; Plasmids ; Promoter Regions, Genetic/genetics ; Receptors, Antigen, T-Cell/*genetics ; Repetitive Sequences, Nucleic Acid ; *Transcription, Genetic ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2011-08-26
    Description: Pyruvate serves as a metabolic precursor for many plastid-localized biosynthetic pathways, such as those for fatty acids, terpenoids and branched-chain amino acids. In spite of the importance of pyruvate uptake into plastids (organelles within cells of plants and algae), the molecular mechanisms of this uptake have not yet been explored. This is mainly because pyruvate is a relatively small compound that is able to passively permeate lipid bilayers, which precludes accurate measurement of pyruvate transport activity in reconstituted liposomes. Using differential transcriptome analyses of C(3) and C(4) plants of the genera Flaveria and Cleome, here we have identified a novel gene that is abundant in C(4) species, named BASS2 (BILE ACID:SODIUM SYMPORTER FAMILY PROTEIN 2). The BASS2 protein is localized at the chloroplast envelope membrane, and is highly abundant in C(4) plants that have the sodium-dependent pyruvate transporter. Recombinant BASS2 shows sodium-dependent pyruvate uptake activity. Sodium influx is balanced by a sodium:proton antiporter (NHD1), which was mimicked in recombinant Escherichia coli cells expressing both BASS2 and NHD1. Arabidopsis thaliana bass2 mutants lack pyruvate uptake into chloroplasts, which affects plastid-localized isopentenyl diphosphate synthesis, as evidenced by increased sensitivity of such mutants to mevastatin, an inhibitor of cytosolic isopentenyl diphosphate biosynthesis. We thus provide molecular evidence for a sodium-coupled metabolite transporter in plastid envelopes. Orthologues of BASS2 can be detected in all the genomes of land plants that have been characterized so far, thus indicating the widespread importance of sodium-coupled pyruvate import into plastids.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Furumoto, Tsuyoshi -- Yamaguchi, Teppei -- Ohshima-Ichie, Yumiko -- Nakamura, Masayoshi -- Tsuchida-Iwata, Yoshiko -- Shimamura, Masaki -- Ohnishi, Junichi -- Hata, Shingo -- Gowik, Udo -- Westhoff, Peter -- Brautigam, Andrea -- Weber, Andreas P M -- Izui, Katsura -- England -- Nature. 2011 Aug 24;476(7361):472-5. doi: 10.1038/nature10250.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Graduate School of Science, Hiroshima University, 1-3-1, Kagamiyama, Higashi-Hiroshima, 739-8526, Japan. tfurumoto@hiroshima-u.ac.jp〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21866161" target="_blank"〉PubMed〈/a〉
    Keywords: Arabidopsis/genetics/growth & development/metabolism ; Flaveria/genetics/growth & development/metabolism ; Membrane Transport Proteins/analysis/chemistry/genetics/*metabolism ; Molecular Sequence Data ; Plant Proteins/analysis/chemistry/genetics/*metabolism ; Plastids/genetics/*metabolism ; Pyruvic Acid/metabolism ; RNA, Messenger/genetics/metabolism ; RNA, Plant/genetics/metabolism ; Sodium/*metabolism ; Transcription, Genetic
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1987-07-03
    Description: The human T cell receptor (TCR) gamma polypeptide occurs in structurally distinct forms on certain peripheral blood T lymphocytes. Complementary DNA clones representing the transcripts of functionally rearranged TCR gamma genes in these cells have been analyzed. The expression of a disulfide-linked and a nondisulfide-linked form of TCR gamma correlates with the use of the C gamma 1 and C gamma 2 constant-region gene segments, respectively. Variability in TCR gamma polypeptide size and disulfide linkage is determined by the number of copies and the sequence of a repeated segment of the constant region. Thus C gamma 1 and C gamma 2 are used to generate structurally distinct, yet functional, T3-associated receptor complexes on peripheral blood lymphocytes. Tryptic peptide mapping suggests that the T3-associated TCR gamma and delta peptides in the nondisulfide-linked form are distinct.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Krangel, M S -- Band, H -- Hata, S -- McLean, J -- Brenner, M B -- 1-KO1-AM01598/AM/NIADDK NIH HHS/ -- 1-RO1-GM38308/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1987 Jul 3;237(4810):64-7.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2955517" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Base Sequence ; Exons ; Genes ; Humans ; Peptide Fragments/*genetics ; Receptors, Antigen, T-Cell/*genetics ; Receptors, Antigen, T-Cell, gamma-delta ; Repetitive Sequences, Nucleic Acid ; T-Lymphocytes/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1987-10-30
    Description: A novel T cell receptor (TCR) subunit termed TCR delta, associated with TCR gamma and CD3 polypeptides, was recently found on a subpopulation of human T lymphocytes. T cell-specific complementary DNA clones present in a human TCR gamma delta T cell complementary DNA library were obtained and characterized in order to identify candidate clones encoding TCR delta. One cross-hybridizing group of clones detected transcripts that are expressed in lymphocytes bearing TCR gamma delta but not in other T lymphocytes and are encoded by genes that are rearranged in TCR gamma delta lymphocytes but deleted in other T lymphocytes. Their sequences indicate homology to the variable, joining, and constant elements of other TCR and immunoglobulin genes. These characteristics, as well as the immunochemical data presented in a companion paper, are strong evidence that the complementary DNA clones encode TCR delta.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hata, S -- Brenner, M B -- Krangel, M S -- 1-K01-AM01598/AM/NIADDK NIH HHS/ -- New York, N.Y. -- Science. 1987 Oct 30;238(4827):678-82.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Tumor Virology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/3499667" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Base Sequence ; Cloning, Molecular ; DNA/genetics ; Genes ; Humans ; Membrane Proteins/genetics ; Molecular Sequence Data ; RNA, Messenger/genetics ; Receptors, Antigen, T-Cell/*genetics ; T-Lymphocytes/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 1987-10-30
    Description: The T cell receptor (TCR) delta protein is expressed as part of a heterodimer with TCR gamma, in association with the CD3 polypeptides on a subset of functional peripheral blood T lymphocytes, thymocytes, and certain leukemic T cell lines. A monoclonal antibody directed against TCR delta was produced that binds specifically to the surface of several TCR gamma delta cell lines and immunoprecipitates the TCR gamma delta as a heterodimer from Triton X-100 detergent lysates and also immunoprecipitates the TCR delta subunit alone after chain separation. A candidate human TCR delta complementary DNA clone (IDP2 O-240/38), reported in a companion paper, was isolated by the subtractive library approach from a TCR gamma delta cell line. This complementary DNA clone was used to direct the synthesis of a polypeptide that is specifically recognized by the monoclonal antibody to TCR delta. This complementary DNA clone thus corresponds to the gene that encodes the TCR delta subunit.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Band, H -- Hochstenbach, F -- McLean, J -- Hata, S -- Krangel, M S -- Brenner, M B -- 1-KO1-AMO1598/AM/NIADDK NIH HHS/ -- 5RO1-AI15669/AI/NIAID NIH HHS/ -- SO7RR5526-24/RR/NCRR NIH HHS/ -- New York, N.Y. -- Science. 1987 Oct 30;238(4827):682-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Tumor Virology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/3672118" target="_blank"〉PubMed〈/a〉
    Keywords: Antibodies, Monoclonal/*immunology ; Antibody Specificity ; Cell Line ; Cloning, Molecular ; DNA/genetics ; Glycoproteins/genetics/immunology ; Humans ; Receptors, Antigen, T-Cell/*genetics/immunology ; Recombinant Proteins/immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 1988-06-10
    Description: The human T cell receptor delta (TCR delta) gene encodes one component of the TCR gamma delta-CD3 complex found on subsets of peripheral blood and thymic T cells. Human TCR delta diversity was estimated by characterizing rearrangements in TCR gamma delta cell lines and determining the structures of complementary DNA clones representing functional and nonfunctional transcripts in these cell lines. One V delta segment and one J delta segment were identified in all functional transcripts, although a distinct J delta segment was identified in a truncated transcript. Further, one D delta element was identified, and evidence for the use of an additional D delta element was obtained. Thus human TCR delta genes appear to use a limited number of germline elements. However, the apparent use of two D delta elements in tandem coupled with imprecise joining and extensive incorporation of N nucleotides generates unprecedented variability in the junctional region.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hata, S -- Satyanarayana, K -- Devlin, P -- Band, H -- McLean, J -- Strominger, J L -- Brenner, M B -- Krangel, M S -- K01-AM01598/AM/NIADDK NIH HHS/ -- R01-AM30241/AM/NIADDK NIH HHS/ -- S07RR05526-24/RR/NCRR NIH HHS/ -- New York, N.Y. -- Science. 1988 Jun 10;240(4858):1541-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/3259726" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Base Sequence ; Cell Line ; *Genes ; Genetic Variation ; Humans ; Molecular Sequence Data ; Receptors, Antigen, T-Cell/*genetics ; T-Lymphocytes/*immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-05-21
    Description: Sn-Ag-Cu alloy used in the present study is commercial Sn-3.0Ag-0.5Cu solder ball alloys with a diameter of 400 and 300 μm which were long term atmospheric oxidized for about 6 years (specimen-1) and under high temperature/humidity at 85°C and relative humidity of 85% for 2140 h, respectively. Morphologies and nanostructure of the oxide nanolayers formed on the surface of Sn-Ag-Cu alloys were studied from the interface of the oxide film and the tin substrate by transmission electron microscopy (TEM) to verify the oxidation mechanism. Cross-sectional TEM specimens were prepared using a focused-ion-beam (FIB) micro-sampling technique. Before the FIB fabrication, the specimen surface was coated with carbon (C) and tungsten (W) films. Inhomogeneous thickness of tin-oxide nanolayer formed on specimen-1 and specimen-2 were fluctuated between 20-40 nm and 40-50 nm, respectively. The nanolayer on specimen-1, however, consists of polycrystalline SnO and SnO 2 , whereas the one o...
    Print ISSN: 1757-8981
    Electronic ISSN: 1757-899X
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...