ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Keywords
  • 1
    Publication Date: 2002-11-01
    Print ISSN: 1618-2642
    Electronic ISSN: 1618-2650
    Topics: Chemistry and Pharmacology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
  • 3
    Publication Date: 2018-12-27
    Electronic ISSN: 1541-5856
    Topics: Biology , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-22
    Electronic ISSN: 2045-2322
    Topics: Natural Sciences in General
    Published by Springer Nature
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-12-23
    Description: Kelps in the Arctic region are facing challenging natural conditions. They experience over 120 days of darkness during the polar night surviving on storage compounds without conducting photosynthesis. Furthermore, the Arctic is experiencing continuous warming as a consequence of climate change. Such temperature increase may enhance the metabolic activity of kelps, using up storage compounds faster. As the survival strategy of kelps during darkness in the warming Arctic is poorly understood, we studied the physiological and transcriptomic responses of Saccharina latissima, one of the most common kelp species in the Arctic, after a 2-week dark exposure at two temperatures (0 and 4°C) versus the same temperatures under low light conditions. Growth rates were decreased in darkness but remained stable at two temperatures. Pigments had higher values in darkness and at 4°C. Darkness had a greater impact on the transcriptomic performance of S. latissima than increased temperature according to the high numbers of differentially expressed genes between dark and light treatments. Darkness generally repressed the expression of genes coding for glycolysis and metabolite biosynthesis, as well as some energy-demanding processes, such as synthesis of photosynthetic components and transporters. Moreover, increased temperature enhanced these repressions, while the expression of some genes encoding components of the lipid and laminaran catabolism, glyoxylate cycle and signaling were enhanced in darkness. Our study helps to understand the survival strategy of kelp in the early polar night and its potential resilience to the warming Arctic.
    Electronic ISSN: 2296-7745
    Topics: Biology
    Published by Frontiers Media
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Iñiguez, Concepcion; Heinrich, Sandra; Harms, Lars; Gordillo, Francisco J L (2017): Increased temperature and CO2 alleviate photoinhibition in Desmarestia anceps: from transcriptomics to carbon utilization. Journal of Experimental Botany, 68(14), 3971-3984, https://doi.org/10.1093/jxb/erx164
    Publication Date: 2024-03-15
    Description: Ocean acidification and warming are affecting polar regions with particular intensity. Rocky shores of the Antarctic Peninsula are dominated by canopy-forming Desmarestiales. This study investigates the physiological and transcriptomic responses of the endemic macroalga Desmarestia anceps to a combination of different levels of temperature (2 and 7 °C), dissolved CO2 (380 and 1000 ppm), and irradiance (65 and 145 µmol photons/m**2/s). Growth and photosynthesis increased at high CO2 conditions, and strongly decreased at 2 °C plus high irradiance, in comparison to the other treatments. Photoinhibition at 2 °C plus high irradiance was evidenced by the photochemical performance and intensive release of dissolved organic carbon. The highest number of differentially regulated transcripts was observed in thalli exposed to 2 °C plus high irradiance. Algal 13C isotopic discrimination values suggested an absence of down-regulation of carbon-concentrating mechanisms at high CO2. CO2 enrichment induced few transcriptomic changes. There was high and constitutive gene expression of many photochemical and inorganic carbon utilization components, which might be related to the strong adaptation of D. anceps to the Antarctic environment. These results suggest that increased temperature and CO2 will allow D. anceps to maintain its productivity while tolerating higher irradiances than at present conditions.
    Keywords: Alkalinity, total; Alkalinity, total, standard deviation; Aragonite saturation state; Benthos; Bicarbonate, standard deviation; Bicarbonate ion; Biomass/Abundance/Elemental composition; Bottles or small containers/Aquaria (〈20 L); Calcite saturation state; Calculated using CO2calc; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon, inorganic, dissolved, standard deviation; Carbon, total; Carbon, total, standard deviation; Carbon/Nitrogen ratio; Carbon/Nitrogen ratio, standard deviation; Carbonate ion; Carbonate ion, standard deviation; Carbonate system computation flag; Carbon dioxide; Carbon dioxide, standard deviation; Carotenoids; Carotenoids, standard deviation; Chlorophyll a; Chlorophyll a, standard deviation; Chlorophyll c1+c2; Chlorophyll c1+c2, standard deviation; Chromista; Desmarestia anceps; Dissolved organic carbon release rate; Dissolved organic carbon release rate, standard deviation; Experiment duration; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Gross photosynthesis rate, oxygen; Gross photosynthesis rate, standard deviation; Growth/Morphology; Growth rate; Growth rate, standard deviation; Inhibition of net photosynthesis; Inhibition of net photosynthesis, standard deviation; Irradiance; Irradiance, standard deviation; Laboratory experiment; Laboratory strains; Light; Light saturation, standard deviation; Macroalgae; Maximal electron transport rate; Maximal electron transport rate, standard deviation; Maximum photochemical quantum yield of photosystem II; Maximum photochemical quantum yield of photosystem II, standard deviation; Net photosynthesis rate, oxygen; Net photosynthesis rate, standard deviation; Nitrogen, total; Nitrogen, total, standard deviation; Not applicable; OA-ICC; Ocean Acidification International Coordination Centre; Ochrophyta; Other metabolic rates; Partial pressure of carbon dioxide, standard deviation; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Percentage; Percentage, standard deviation; pH; pH, standard deviation; Photosynthetic efficiency; Photosynthetic efficiency, standard deviation; Potentiometric; Potentiometric titration; Primary production/Photosynthesis; Ratio; Ratio, standard deviation; Registration number of species; Respiration; Respiration rate, oxygen; Respiration rate, oxygen, standard deviation; Salinity; Salinity, standard deviation; Saturation light intensity; Single species; Species; Temperature; Temperature, water; Treatment; Type; Uniform resource locator/link to reference; δ13C; δ13C, standard deviation
    Type: Dataset
    Format: text/tab-separated-values, 624 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-04-20
    Description: In a mechanistic investigation of heat stress, heterosis (hybrid vigour), and underlying gene expression patterns, we assessed the thermal performance of inbred (selfings) and outbred (reciprocal crosses) sporophytes of the N-Atlantic kelp Laminaria digitata among clonal isolates from two divergent populations; one from the temperate North Sea (Helgoland) and one from the Arctic (Spitsbergen). First, we investigated the upper thermal tolerance of microscopic sporophytes in a 14-day experiment applying sublethal to lethal 20–23°C. We then subjected 4–7 cm long sporophytes to a control temperature (10°C), moderate (19°C) and sublethal to lethal heat stress (20.5°C) for 18 days to assess the physiological parameters growth and optimum quantum yield.
    Keywords: Arctic; Biological sample; BIOS; gametogenesis; growth; Helgoland_L_digitata_culture; Laboratory experiment; North Sea; quantum yield; Spitsbergen_L_digitata_culture; Survival; Temperate
    Type: Dataset
    Format: application/zip, 13.6 kBytes
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    In:  EPIC317. Tagung der Sektion Phykologie in der Deutschen Botansichen Gesellschaft, Berchtesgarden, Haus der Berge, 2018-03-11-2018-03-14Berchtesgarden
    Publication Date: 2018-03-21
    Description: Climate change is significantly impacting the structure and function of marine ecosystems world wide with implications for species distribution ranges. In coastal systems, climate change may also alter other abiotic factors such as salinity, which may decrease due increased glacial melting in the Arctic or precipitation in temperate regions. Despite the prime ecological importance of kelps (order Laminariales) which dominate rocky benthic ecosystems in temperate to polar regions, the acclimation mechanisms and transcriptomic responses remain understudied. Here, we investigate the physiological and transcriptomic responses in sporophytes of the sugar kelp, Saccharina latissima to salinity stress after acclimation to temperature and their nterrelationships. Juvenile sporophytes of a strain from Roscoff, France were pre-cultivated at 8°C and 30 PSU for three months. After seven days of acclimation to 0°C and 15°C, sporophytes were exposed to a low salinity treatment (20 PSU) for 24 h. We established a reference transcriptome from all reads obtained through Illumina HiSeq. A total of 205 363 transcripts were assembled containing 135 959 “Trinity’s genes”. Gene expression is mostly driven by salinity stress than by temperature. The highest number of regulated genes, in comparison to the control, was found in response to the treatment 0°C low salinity (3003), followed by 8°C low salinity (1491) and 15°C low salinity (1158). Moreover, only few genes (168) were found to be differentially expressed in all low salinity treatments, showing that the response to low salinity is modulated by temperature. Growth, photosynthetic efficiency and pigment content were also impacted by stress.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2021-01-12
    Description: The sugar kelp Saccharina latissima experiences a wide range of environmental conditions along its geographical and vertical distribution range. Temperature and salinity are two critical drivers influencing growth, photosynthesis and biochemical composition. Moreover, interactive effects might modify the results described for single effects. In shallow water coastal systems, exposure to rising temperatures and low salinity are expected as consequence of global warming, increased precipitation and coastal run-off. To understand the acclimation mechanisms of S. latissima to changes in temperature and salinity and their interactions, we performed a mechanistic laboratory experiment in which juvenile sporophytes from Brittany, France were exposed to a combination of three temperatures (0, 8 and 15°C) and two salinity levels (20 and 30 psu (practical salinity units)). After a temperature acclimation of 7 days, sporophytes were exposed to low salinity (20 psu) for a period of 11 days. Growth, and maximal quantum yield of photosystem II (Fv/Fm), pigments, mannitol content and C:N ratio were measured over time. We report for the first time in S. latissima a fivefold increase in the osmolyte mannitol in response to low temperature (0°C) compared to 8 and 15°C that may have ecological and economic implications. Low temperatures significantly affected all parameters, mostly in a negative way. Chlorophyll a, the accessory pigment pool, growth and Fv/Fm were significantly lower at 0°C, while the de-epoxidation state of the xanthophyll cycle was increased at both 0 and 8°C compared to 15°C. Mannitol content and growth decreased with decreased salinity; in contrast, pigment content and Fv/Fm were to a large extent irresponsive to salinity. In comparison to S. latissima originating from an Arctic population, despite some reported differences, this study reveals a remarkably similar impact of temperature and salinity variation, reflecting the large degree of adaptability in this species.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev , info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-12-28
    Description: The Arctic region is currently facing substantial environmental changes due to global warming. Melting glaciers cause reduced salinity environments in coastal Arctic habitats, which may be stressful for kelp beds. To investigate the responses of the kelp Saccharina latissima to the warming Arctic, we studied the transcriptomic changes of S. latissima from Kongsfjorden (Svalbard, Norway) over a 24-hour exposure to two salinities (Absolute Salinity [SA] 20 and 30) after a 7-day pre-acclimation at three temperatures (0, 8 and 15∘C). In addition, corresponding physiological data were assessed during an 11-days salinity/temperature experiment. Growth and maximal quantum yield for photosystem II fluorescence were positively affected by increased temperature during acclimation, whereas hyposalinity caused negative effects at the last day of treatment. In contrast, hyposalinity induced marked changes on the transcriptomic level. Compared to the control (8∘C – SA 30), the 8∘C – SA 20 exhibited the highest number of differentially expressed genes (DEGs), followed by the 0∘C – SA 20. Comparisons indicate that S. latissima tends to convert its energy from primary metabolism (e.g. photosynthesis) to antioxidant activity under hyposaline stress. The increase in physiological performance at 15∘C shows that S. latissima in the Arctic region can adjust and might even benefit from increased temperatures. However, in Arctic fjord environments its performance might become impaired by decreased salinity as a result of ice melting.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev , info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...