ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Years
  • 1
    Publication Date: 2023-06-19
    Description: Amazonian forests function as biomass and biodiversity reservoirs, contributing to climate change mitigation. While they continuously experience disturbance, the effect that disturbances have on biomass and biodiversity over time has not yet been assessed at a large scale. Here, we evaluate the degree of recent forest disturbance in Peruvian Amazonia and the effects that disturbance, environmental conditions and human use have on biomass and biodiversity in disturbed forests. We integrate tree-level data on aboveground biomass (AGB) and species richness from 1840 forest plots from Peru's National Forest Inventory with remotely sensed monitoring of forest change dynamics, based on disturbances detected from Landsat-derived Normalized Difference Moisture Index time series. Our results show a clear negative effect of disturbance intensity tree species richness. This effect was also observed on AGB and species richness recovery values towards undisturbed levels, as well as on the recovery of species composition towards undisturbed levels. Time since disturbance had a larger effect on AGB than on species richness. While time since disturbance has a positive effect on AGB, unexpectedly we found a small negative effect of time since disturbance on species richness. We estimate that roughly 15% of Peruvian Amazonian forests have experienced disturbance at least once since 1984, and that, following disturbance, have been increasing in AGB at a rate of 4.7 Mg ha−1 year−1 during the first 20 years. Furthermore, the positive effect of surrounding forest cover was evident for both AGB and its recovery towards undisturbed levels, as well as for species richness. There was a negative effect of forest accessibility on the recovery of species composition towards undisturbed levels. Moving forward, we recommend that forest-based climate change mitigation endeavours consider forest disturbance through the integration of forest inventory data with remote sensing methods.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-01-25
    Description: National forest inventories (NFI) provide essential forest-related biomass and carbon information for country greenhouse gas (GHG) accounting systems. Several tropical countries struggle to execute their NFIs while the extent to which space-based global information on aboveground biomass (AGB) can support national GHG accounting is under investigation. We assess whether the use of a global AGB map as auxiliary information produces a gain in precision of subnational AGB estimates for the Peruvian Amazonia. We used model-assisted estimators with data from the country’s NFI and explored hybrid inferential techniques to account for the sources of uncertainty associated with the integration of remote sensing-based products and NFI plot data. Our results show that the selected global biomass map tends to overestimate AGB values across the Peruvian Amazonia. For most strata, directly using the map in its published form did not reduce the precision of AGB estimates. However, after calibrating the map using the NFI data, the precision of our map-assisted AGB estimates increased by up to 50% at stratum level and 20% at Amazonia level. We further demonstrate how different sources of uncertainties can be incorporated in the map-NFI integrated estimates. With the hybrid inferential analysis, we found that the small spatial support of the NFI plots compared to the remote sensing-based sample units of aggregated pixels (within block variability) contributed the most to the total uncertainty associated with the AGB estimates from our map-NFI integration. Uncertainties caused by measurement variability and allometric model prediction uncertainty were the second largest contributors. When these uncertainties were incorporated, the increase in precision of our calibrated map-assisted AGB estimates was negligible, probably hindered by the great contribution of the within block variability to our map-plot assessment. We developed a reproducible method that countries can build upon and further improve while the global biomass products continue to evolve and better characterize the AGB distribution under large biomass conditions. We encourage further cross-country case studies that reflect a wider range of AGB distributions, especially within humid tropical forests, to further assess the contribution of global biomass maps to (sub)national AGB estimates and finally GHG monitoring and reporting.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...