ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Call number: 9/M 07.0421(500)
    In: Geological Society special publication : 476
    Type of Medium: Monograph available for loan
    Pages: vii, 639 Seite , Illustrationen, Karten, Diagramme
    ISBN: 978-1-78620-477-6
    Series Statement: Geological society special publications no. 500
    Language: English
    Location: Reading room
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1365-3091
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: Co-genetic debrite–turbidite beds occur in a variety of modern and ancient turbidite systems. Their basic character is distinctive. An ungraded muddy sandstone interval is encased within mud-poor graded sandstone, siltstone and mudstone. The muddy sandstone interval preserves evidence of en masse deposition and is thus termed a debrite. The mud-poor sandstone, siltstone and mudstone show features indicating progressive layer-by-layer deposition and are thus called a turbidite. Palaeocurrent indicators, ubiquitous stratigraphic association and the position of hemipelagic intervals demonstrate that debrite and enclosing turbidite originate in the same event. Detailed field observations are presented for co-genetic debrite–turbidite beds in three widespread sequences of variable age: the Miocene Marnoso Arenacea Formation in the Italian Apennines; the Silurian Aberystwyth Grits in Wales; and Quaternary deposits of the Agadir Basin, offshore Morocco. Deposition of these sequences occurred in similar unchannellized basin-plain settings. Co-genetic debrite–turbidite beds were deposited from longitudinally segregated flow events, comprising both debris flow and forerunning turbidity current. It is most likely that the debris flow was generated by relatively shallow (few tens of centimetres) erosion of mud-rich sea-floor sediment. Changes in the settling behaviour of sand grains from a muddy fluid as flows decelerated may also have contributed to debrite deposition. The association with distal settings results from the ubiquitous presence of muddy deposits in such locations, which may be eroded and disaggregated to form a cohesive debris flow. Debrite intervals may be extensive (〉 26 × 10 km in the Marnoso Arenacea Formation) and are not restricted to basin margins. Such long debris flow run-out on low-gradient sea floor (〈 0·1°) may simply be due to low yield strength (≪ 50 Pa) of the debris–water mixture. This study emphasizes that multiple flow types, and transformations between flow types, can occur within the distal parts of submarine flow events.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Submarine landslides can generate sediment-laden flows whose scale is impressive. Individual flow deposits have been mapped that extend for 1,500 km offshore from northwest Africa. These are the longest run-out sediment density flow deposits yet documented on Earth. This contribution ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2007-10-08
    Description: Many hydrocarbon reservoirs occur within confined turbidite systems in which the depositional pattern of turbidity currents has been strongly influenced by basin-floor topography. In certain settings basin-floor topography may cause the development of anomalously thick (tens of metres) sandstones that are potentially excellent reservoir units. Southern exposures of the Peira Cava outlier (Eocene-Oligocene; Annot Sandstones) provide well-exposed outcrops of such decametre-thick sandstone bodies. These units are located close to basin margins and downstream from an inferred topographic break-in-slope. Several base-of-slope sandstone bodies are examined that illustrate a common sedimentary theme of a complex basal unit, comprising laterally pinching or inter-fingering debrite and turbidite, abruptly overlain by a single, thick normally graded turbidite deposit. One of these sandstone bodies pinches out laterally over less than several hundred metres and sits within a deep (〉20 m) spoon shaped' erosional scour. The scour is similar to morphological features observed in modern base-of-slope settings recently imaged using high-resolution submarine bathymetric surveys. Several different process interpretations may explain the occurrence of such sandstone bodies including remobilization of newly deposited sediment off basinmargins and enhanced deposition due to flow across a break-in-slope. A submarine channel interpretation is not consistent with the field observations. However, these units do share a number of similar features to channels that could lead to the misinterpretation of reservoir geometry.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2007-10-08
    Description: Understanding topographic effects upon the depositional processes of turbidity currents and the resulting deposit characteristics is key to producing reliable depositional models for turbidity currents. In this study, the effect on depositional patterns of a lateral slope whose strike is parallel to the principal direction of flow is explored using field and experimental results. This type of basin topography is commonly found in confined turbidite systems. Field data from the Peira Cava turbidite system of the Tertiary Alpine Foreland Basin (SE France) and experimental data show that a characteristic depositional pattern is produced by surge-type waning flows that interact with a lateral slope. This pattern comprises beds that thin (and fine in the field study) not only downstream but also markedly away from the lateral slope (Type I beds). In the Peira Cava system, this pattern is also observed in average values of sandstone bed thickness, sandstone percentage and grain-size, derived from measured sections, demonstrating that the processes responsible for this pattern also control gross properties within this sheet system. The characteristic thinning-away-from-slope deposit geometry is interpreted as an effect of the lateral slope via its influence on spatial variations in flow properties and on the suspended load fallout rate (SLFR) from currents. Flow velocity non-uniformity cannot explain thinning into the basin because flow has a higher deceleration along streamlines away from the slope that should cause higher SLFR and thicker deposits away from the slope instead of close to the slope. A concentration non-uniformity mechanism is invoked that has the effect of maintaining relatively high flow concentrations and hence SLFR in medial and distal locations close to the slope. Experiments suggest that this may arise due to different rates of flow expansion on the obstructed and unobstructed sides of the current in proximal regions. Velocity non-uniformity can, however, explain the geometry of deposits that thicken away from slope. Beds of this type do occur occasionally in the Peira Cava system (Type II beds). Flow velocity non-uniformity patterns have been used previously to successfully explain the spatial distributions of depositional facies of turbidity currents that have interacted with topography. The analysis in this study demonstrates that velocity non-uniformity, by itself, cannot explain depositional patterns in all basin settings. Future depositional models need to incorporate the effects of spatial changes in other flow properties, such as flow concentration, upon deposition to be able to predict turbidite facies in many different types of basin setting.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2013-05-18
    Description: A series of waterflood simulations were performed to investigate the effect of basinal position and facies permeability within a turbidite sheet system on oil recovery efficiency. Simulations used three-dimensional outcrop models of the Peïra Cava system, comprising gravel, sandstone, thin-bedded heterolithic and mudstone facies. Recovery efficiency declines with increasing permeability heterogeneity and is influenced by the interaction of vertical bed-permeability trends and flood-front gravity slumping. The occurrence of gravels with permeabilities lower than overlying sandstones produces optimum recoveries. High permeability gravels act as thief zones, enhanced by downward gravity slumping, reducing normalized recovery by up to 34 %. The effect of thief zones on recovery is related to their permeability contrast, abundance, thickness, lateral continuity, vertical position within permeable units and the permeability of underlying facies. Proximal to distal stratigraphic variations produce relatively small differences in normalized recovery of up to 13 % in models with the highest permeability heterogeneity. Differences in recovery are interpreted to reflect spatial trends in facies architecture, which determine the effectiveness of high permeability gravel thief zones. The poorest recovery is recorded from the medial model where recovery is lower than distal areas because of higher gravel abundance and thicknesses and lower compared to proximal areas because of the higher lateral continuity of gravels and underlying low-permeability mudstones.
    Print ISSN: 1354-0793
    Topics: Chemistry and Pharmacology , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2012-12-04
    Description: The Miocene Marnoso-arenacea Formation (Italy) is the only ancient sequence where deposits of individual submarine density flow deposits have been mapped in detail for long (〉100 km) distances, thereby providing unique information on how such flows evolve. These beds were deposited by large and infrequent flows in a low-relief basin plain. An almost complete lack of bed amalgamation aids bed correlation, and resembles some modern abyssal plains, but contrasts with ubiquitous bed amalgamation seen in fan-lobe deposits worldwide. Despite the subdued topography of this basin plain, the beds have a complicated character. Previous work showed that a single flow can commonly comprise both turbidity current and cohesive mud-rich debris flows. The debris flows were highly mobile on low gradients, but their deposits are absent in outcrops nearest to source. Similar hybrid beds have been documented in numerous distal fan deposits worldwide, and they represent an important process for delivering sediment into the deep ocean. It is therefore important to understand their origin and flow dynamics. To account for the absence of debrites in proximal Marnoso-arenacea Formation outcrops, it was proposed that debris flows originated within the study area due to erosion of mud-rich seafloor; we show that this is incorrect. Clast and matrix composition show that sediment within the cohesive debris flows originated outside the study area. Previous work showed that intermediate and low strength debris flows produced different downflow-trending facies tracts. Here, we show that intermediate strength debris flows entered the study area as debris flows, while low strength (clast poor) debris flows most likely formed through local transformation from an initially turbulent mud-rich suspension. New field data document debrite planform shape across the basin plain. Predicting this shape is important for subsurface oil and gas reservoirs. Low strength and intermediate strength debrites have substantially different planform shapes. However, the shape of each type of debrite is consistent. Low strength debrites occur in two tongues at the margins of the outcrop area, while intermediate strength debrite forms a single tongue near the basin center. Intermediate strength debrites are underlain by a thin layer of structureless clean sandstone that may have settled out from the debris flow at a late stage, as seen in laboratory experiments, or been deposited by a forerunning turbidity current that is closely linked to the debris flow. Low strength debrites can infill relief created by underlying dune crests, suggesting gentle emplacement. Dewatering of basal clean sand did not cause a long runout of debris flows in this location. Hybrid beds are common in a much thicker stratigraphic interval than was studied previously, and the same two types of debrite occur there. Hybrid flows transported large volumes (as much as 10 km 3 per flow) of sediment into this basin plain, over a prolonged period of time.
    Electronic ISSN: 1553-040X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2018-02-15
    Description: The central problem of describing most environmental and industrial flows is predicting when material is entrained into, or deposited from, suspension. The threshold between erosional and depositional flow has previously been modeled in terms of the volumetric amount of material transported in suspension. Here a new model of the threshold is proposed, which incorporates (i) volumetric and particle size limits on a flow's ability to transport material in suspension, (ii) particle size distribution effects, and (iii) a new particle entrainment function, where erosion is defined in terms of the power used to lift mass from the bed. While current suspended load transport models commonly use a single characteristic particle size, the model developed herein demonstrates that particle size distribution is a critical control on the threshold between erosional and depositional flow. The new model offers an order of magnitude, or better, improvement in predicting the erosional-depositional threshold and significantly outperforms existing particle-laden flow models. ©2018. American Geophysical Union. All Rights Reserved.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2020-01-01
    Description: This volume focuses on underwater or subaqueous landslides with the overarching goal of understanding how they affect society and the environment. The new research presented here is the result of significant advances made over recent years in directly monitoring submarine landslides, in standardizing global datasets for quantitative analysis, constructing a global database and from leading international research projects. Subaqueous Mass Movements demonstrates the breadth of investigation taking place into subaqueous landslides and shows that, while events like the recent ones in the Indonesian archipelago can be devastating, they are at the smaller end of what the Earth has experienced in the past. Understanding the spectrum of subaqueous landslide processes, and therefore the potential societal impact, requires research across all spatial and temporal scales. This volume delivers a compilation of state-of-the-art papers covering topics from regional landslide databases to advanced techniques for in situ measurements, to numerical modelling of processes and hazards.
    Print ISSN: 0305-8719
    Electronic ISSN: 2041-4927
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2004-02-01
    Print ISSN: 0037-0746
    Electronic ISSN: 1365-3091
    Topics: Geosciences
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...