ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Language
  • 11
    Call number: S 99.0139(352)
    In: Wissenschaftliche Arbeiten der Fachrichtung Geodäsie und Geoinformatik der Leibniz Universität Hannover, Nr. 352
    Type of Medium: Series available for loan
    Pages: x, 213 Seiten , Illustrationen, Karten , 30 cm
    ISSN: 0174-1454
    Series Statement: Wissenschaftliche Arbeiten der Fachrichtung Geodäsie und Geoinformatik der Leibniz-Universität Hannover Nr. 352
    Language: German
    Note: Dissertation, Gottfried Wilhelm Leibniz Universität Hannover, 2019 , Inhaltverzeichnis Abbildungsverzeichnis Tabellenverzeichnis Abkürzungsverzeichnis 1 Einführung 1.1 Anlass und Ziel der Arbeit 1.2 Überblick über den Stand der Forschung 1.3 Methodische Überlegung der Arbeit und Arbeitsschritte 2 Folgen der demografischen Entwicklung für die Grundschulen 2.1 Demografische Entwicklung in Deutschland 2.2 Auswirkung der demografischen Entwicklung auf den Bestand der Grundschulen in Niedersachsen 2.3 Folgerungen für die Arbeit 3 Auslastung der Grundschulen 3.1 Gesetzliche Rahmenbedingungen für die Auslastung der Schule 3.2 Literaturmeinung zur Definition der unterausgelasteten Schule 3.3 Definition der unterausgelasteten Schulen in dieser Arbeit 4 Einzugsbereiche der Grundschulen 4.1 Gesetzliche Rahmenbedingungen des Einzugsbereiches einer Grundschule 4.2 Literaturmeinung zur Ermittlung eines Einzugsbereiches einer Grundschule 4.3 Ermittlung des Einzugsbereiches einer Schule in der Arbeit 4.3.1 Zuordnung der Schüler eines Ortsteils 4.3.2 Varianten des Einzugsbereiches 4.3.3 Mehrere Schulen in einem Ortsteil 4.4 Gruppierung der Grundschulen 4.4.1 Kriterien der Gruppierung der Grundschulen 4.4.2 Überlappungen der Gruppen 5 Bewertung der Zuordnungen der Schüler zu der Schulen 5 .1 Bewertungsmethoden der Schulen 5.2 Bisherige Literaturmeinung zur Bewertung der Schulen 5.3 Nutzwertanalysen zu Zuordnungen der Schüler zu den Schulen einer Gruppe 5.3 .1 Demografische Kriterien 5.3.2 Ökonomische Kriterien 5.3.3 Ökologische Kriterien 5.3.4 Qualitative Kriterien eines Schulstandortes 6 Fallstudie Landkreis Holzminden 6.1 Landkreis Holzminden 6.2 Auslastungsquote der Grundschulen im Landkreis Holzminden 6.3 Einzugsbereiche der Schulen im Landkreis Holzminden 6.3.1 Grundschule Lauenförde 6.3.2 Grundschule Ottenstein 6.4 Optimale Gruppierungen von Grundschulen im Landkreis Holzminden 6.5 Nutzwerte der Aufteilungen der Schüler der Gruppen im Landkreis Holzminden 6.5.1 Demografische Nutzwertanalyse 6.5.2 Ökonomische Nutzwertanalyse 6.5.3 Ökologische Nutzwertanalyse 6.5.4 Qualitative Nutzwertanalyse 6.5.5 Diskussion des Gesamtergebnisses 6.6 Validierung der Ergebnisse durch Gegenüberstellung von amtlichen und neuen Einzugsbereichen 7 Fazit und Ausblick 8 Literaturverzeichnis Anhang 1 Anhang 1.1 Grundschule am Sollingtor Anhang 1.2 Grundschule Polle Anhang 1.3 Grundschulen Holzminden Stadt Anhang 1.4 Grundschule Hehlen Anhang 1.5 Grundschule Bevem Anhang 1.6 Grundschule Bodenwerder Anhang 1.7 Grundschule Neuhaus im Solling Anhang 1.8 Grundschule im Forstbachtal Anhang 1.9 Grundschule Kirchbrak Anhang 1.10 Grundschule am Nordsolling Deensen Anhang 1.11 Grundschule Hagentorschule Stadtoldendorf Anhang 1.12 Grundschule Eschershausen Anhang 1.13 Grundschule Delligsen Anhang 1.14 Grundschule Halle Anhang 1.15 Grundschule Grünenplan Anhang 2 Anhang 3 Sortierung der Ortsteile der Überlappungsgebiete Anhang 4 Anhang 4.1 Gruppe Hehlen - Kirchbrak - Halle - Bodenwerder Anhang 4.1.1 Demografische Nutzwertanalyse Anhang 4.1.2 Ökonomische Nutzwertanalyse Anhang 4.1.3 Ökologische Nutzwertanalyse Anhang 4.1.4 Qualitative Nutzwertanalyse Anhang 4.2 Gruppe Holzminden Stadt und Bevem Anhang 4.2.1 Demografische Nutzwertanalyse Anhang 4.2.2 Ökonomische Nutzwertanalyse Anhang 4.2.3 Ökologische Nutzwertanalyse Anhang 4.2.4 Qualitative Nutzwertanalyse Anhang 4.3. Gruppe Lauenförde, Boffzen und Neuhaus im Solling Anhang 4.3.1 Demografische Nutzwertanalyse Anhang 4.3.2 Ökonomische Nutzwertanalyse Anhang 4.3.3 Ökologische Nutzwertanalyse Anhang 4.3.4 Qualitative Nutzwertanalyse Anhang 4.4 Gruppe Polle und Ottenstein Anhang 4.4.1 Demografische Nutzwertanalyse Anhang 4.4.2 Ökonomische Nutzwertanalyse Anhang 4.4.3 Ökologische Nutzwertanalyse Anhang 4.4.4 Qualitative Nutzwertanalyse Anhang 4.5 Gruppe Delligsen und Grünenplan Anhang 4.5.1 Demografische Nutzwertanalyse Anhang 4.5.2 Ökonomische Nutzwertanalyse Anhang 4.5.3 Ökologische Nutzwertanalyse Anhang 4.5 .4 Qualitative Nutzwertanalyse
    Location: Lower compact magazine
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Call number: S 99.0139(350)
    In: Wissenschaftliche Arbeiten der Fachrichtung Geodäsie und Geoinformatik der Leibniz Universität Hannover, Nr. 350
    Type of Medium: Series available for loan
    Pages: 130 Seiten , Illustrationen, Diagramme
    ISBN: 0174-1454
    Series Statement: Wissenschaftliche Arbeiten der Fachrichtung Geodäsie und Geoinformatik der Universität Hannover Nr. 350
    Language: German
    Note: Dissertation, Gottfried Wilhelm Leibniz Universität Hannover, 2019 , 1 Einleitung 2 Grundlagen 2.1 Entwicklung der Gravimeter 2.1.1 Funktionsprinzip Freifall-Absolutgravimeter 2.1.2 Stand der Technik Absolutgravimeter 2.1.3 Funktionsprinzip der Relativgravimeter 2.1.4 Relativgravimetrische Methoden 2.1.5 Anwendungen gravimetrischer Messungen 2.1.6 Abgrenzung klassischer gegenüber neuartiger Sensoren 2.1.7 Entwicklungen der Atominterferometer und Quantengravimeter 2.2 Zeitlich variable Schwereeffekte 2.2.1 Gezeiten 2.2.2 Atmosphäre 2.2.3 Polbewegung 2.2.4 Lokale Hydrologie 2.3 Methoden der Modellierung geometrischer Objekte 3 Kombination klassischer Instrumente und Quantensensoren 3.1 Die klassische Referenz: Untersuchung des FG5X-220 3.1.1 Umrüstung des FG5-220 auf das FG5X-220 3.1.2 Rückführung des FG5X-220 auf SI-Einheiten 3.1.3 Zur Genauigkeit des FG5X-220 3.2 State-of-the-Art Relativgravimeter 3.3 Charakterisierung von Quantengravimetern 3.3.1 Vergleichskampagnen in Berlin 3.3.2 Vergleichskampagne in Onsala 3.4 Anforderungen an Reduktionen neuartiger Sensoren 3.4.1 Verbesserte Atmosphärenmodellierung 3.4.2 Vergleich der ERA5 Lösung mit Atmacs 4 Modellierung beliebiger Körper 4.1 Erste Tests anhand Laborumgebungen 4.1.1 Gravimetermesskampagne 4.1.2 Modell der 200 kN Kraft-Normalmesseinrichtung 4.1.3 Vergleich Messung und Modell 4.1.4 Berechnung der Schwere innerhalb der Belastungskörper 4.2 Modellierung des VLBAI 4.2.1 Das Modell des HITec Gebäudes 4.2.2 Gravimetrische Messkampagne 4.2.3 Effekt der Ausstattung am Beispiel der optischen Tische 4.2.4 Beitrag der lokalen Hydrologie 4.2.5 Zusammenfassung der Modellierung im Umfeld des VLBAI 5 Zusammenfassung und Ausblick A Quantengravimeter: Ergänzungen A.1 Atominterferometer Sequenz A.2 Das Gravimetric Atom Interferometer B Absolutgravimetrie mit dem FG5X-220: Ergänzungen B.1 Geräteuntersuchungen B.1.1 Einfluss der Super Spring B.1.2 Bestimmung des Coriolis-Effekt B.2 Absolutgravimetervergleiche B.3 FG5X-220 Zeitreihen C Ergänzende Untersuchungen der Relativgravimeter C.1 Defekt am ZLS B-64 C.2 Kalibrierfaktoren der IfE Relativgravimeter C.3 ZLS B-114 D Arbeiten an der Physikalisch-Technischen Bundesanstalt D.1 Die 200 kN K-NME der PTB D.2 Koordinatensystem an der Kraft-Normalmesseinrichtung (K-NME) D.3 Absolutgravimetermessungen E Hannover Institut für Technologie E.1 Gravimetrische Messungen , Zusammenfassung in Deutsch und Englisch
    Location: Lower compact magazine
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Call number: S 99.0139(365)
    In: Wissenschaftliche Arbeiten der Fachrichtung Geodäsie und Geoinformatik der Leibniz Universität Hannover, Nr. 365
    Type of Medium: Series available for loan
    Pages: 129 Seiten , Illustrationen, Diagramme
    ISBN: 978-3-7696-5270-3
    ISSN: 0174-1454
    Series Statement: Wissenschaftliche Arbeiten der Fachrichtung Geodäsie und Geoinformatik der Leibniz Universität Hannover Nr. 365
    Language: German
    Note: 1. Einleitung 1.1. Motivation 1.2. Zielsetzung und Beitrag der Arbeit 1.2.1. Zielsetzung 1.2.2. Beitrag der Arbeit 1.3. Gliederung 2. Stand der Forschung 2.1. Bündelausgleichung 2.1.1. Zeilenkamera-Bilder 2.1.2. DGM als Passinformation 2.2. High Resolution Stereo Camera (HRSC) 2.2.1. Photogrammetrische Mars-Missionen 2.2.2. Mars Express 2.2.3. Entwicklung und Aufbau der Kamera 2.2.4. Verarbeitung der HRSC-Daten 3. Methodik 3.1. Mathematisches Modell der Bündelausgleichung 3.1.1. Funktionales Modell 3.1.2. Interpolation und Distanz zwischen den Orientierungspunkten 3.1.3. Stochastisches Modell 3.2. Systematische Bündelausgleichung der HRSC-Daten 3.2.1. Vorverarbeitung 3.2.2. Verknüpfungspunktbestimmung 3.2.3. Bündelausgleichung 3.2.4. Evaluierung der Orientierungsdaten 3.3. Zweistufige Bündelausgleichung von Zeilenkamera-Blöcken 3.3.1. Einzelstreifenausgleichung 3.3.2. Konzept der Blockbildung 3.3.3. Teilblock-Strategie zur Verknüpfungspunktbestimmung 3.3.4. Verknüpfungspunktfilter 3.3.5. Blockausgleichung 3.3.6. Stellgrößen des Verfahrens 4. Experimente und Ergebnisse 4.1. Ziele und Daten 4.1.1. Zielsetzung der Experimente 4.1.2. Verwendete HRSC-Daten 4.2. Einzelstreifenauswertung 4.2.1. Beispiel 4.2.2. Schwingungen in den Mars-Express-Orientierungsdaten 4.2.3. Globale Einzelstreifenausgleichung 4.3. Blockauswertungen 4.3.1. Beispiel 4.3.2. Untersuchungen zum Verknüpfungspunktfilter 4.3.3. Systematische Bündelausgleichung der MC-30-Blöcke 4.4. Diskussion der Ergebnisse 5. Fazit 5.1. Zusammenfassung und Schlussfolgerungen 5.2. Ausblick , Sprache der Zusammenfassungen: Deutsch, Englisch
    Location: Lower compact magazine
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Call number: S 99.0139(351)
    In: Wissenschaftliche Arbeiten der Fachrichtung Geodäsie und Geoinformatik der Leibniz Universität Hannover, Nr. 351
    Type of Medium: Series available for loan
    Pages: xxix, 177 Seiten , Illustrationen, Diagramme
    ISSN: 0174-1454
    Series Statement: Wissenschaftliche Arbeiten der Fachrichtung Geodäsie und Geoinformatik der Leibniz Universität Hannover Nr. 351
    Language: English , German
    Note: Dissertation, Gottfried Wilhelm Leibniz Universität Hannover, 2019 , Contents 1. Introduction 1.1. Motivations and background 1.2. Research hypotheses and aims 1.3. Outline of this work 2. Fundamentals and theory of seismic noise 2.1. Fundamentals of mechanical vibration 2.1.1. Theory of oscillation 2.1.1.1. Oscillation and waves 2.1.1.2. Standing waves and resonance 2.1.1.3. Types of noise 2.1.1.4. Signal-to-Noise Ratio 2.1.2. The oscillatory systems 2.1.2.1. Mass-Spring-Damper model 2.1.2.2. Equation of motion 2.1.2.3. Free damped oscillation 2.1.2.4. Forced damped oscillation 2.1.3. Modal analysis 2.1.3.1. Fourier transform 2.1.3.2. Windowing 2.1.3.3. Averaging and overlapping 2.1.4. Data evaluation 2.1.4.1. Presenting spectra and spectral densities 2.1.4.2. RMS value in the frequency domain 2.1.4.3. Transfer function 2.1.4.4. Spectrogram 2.2. Seismic noise sources 2.2.1. Natural sources 2.2.1.1. Geodynamical aspects 2.2.1.2. Geological aspects at Hamburg, DESY 2.2.2. Human-made sources 2.2.2.1. Impact by stationary objects 2.2.2.2. Impact by traffic on site, machines and human work 2.2.2.3. Technical devices in the laboratory 2.3. Methods of seismic isolation 2.3.1. Passive constructions 2.3.1.1. Principle of a simple pendulum 2.3.1.2. Principle of a spring pendulum 2.3.1.3. The inverted pendulum concept 2.3.1.4. The anti-spring concept 2.3.1.5. The harmonic oscillator as transfer function 2.3.2. Control theory 2.3.2.1. Simple controller 2.3.2.2. Feed-forward controller 2.3.2.3. Feedback controller 2.3.2.4. Combined controller 3. The Any Light Particle Search experiment 3.1. ALPS and its seismic noise requirements 3.1.1. The physics of ALPS 3.1.2. Optical resonators 3.1.3. Control loop design 3.1.4. Frequency region and absolute length requirements 3.1.5. Infrastructure and status 3.2. Tools and techniques used for seismicmeasurements, analyses, and isolations 3.2.1. Seismic measuring instruments 3.2.1.1. Seismometers 3.2.1.2. Acquisition devices 3.2.1.3. Selected measurement chain 3.2.2. Data management and analyses 3.2.2.1. Notations for documentation 3.2.2.2. Analysing procedure 3.2.3. Finite Element Method simulation 3.2.3.1. Simple isolation simulations 3.2.3.2. Over-determined isolation systems 3.2.3.3. Selected FEM tools 4. Seismic noise analysis 57 4.1. Method of frequency-weighted and averaged FFT 4.1.1. Problem definition and motivation 4.1.2. The solution approaches 4.1.2.1. Stitching 4.1.2.2. LPSD 4.1.2.3. New solution approach 4.1.3. The MfwaFFT algorithm 4.1.3.1. Data preparation 4.1.3.2. FFT generation 4.1.3.3. Windowing of the iteration steps 4.1.3.4. Weighting 4.1.3.5. Summing up 4.1.4. Advantages and disadvantages 4.1.5. Discussion in the field of geodesy 4.2. Measurement Preparation 4.2.1. Calibration of seismic devices 4.2.1.1. Single instruments 4.2.1.2. Cross-calibration 4.2.2. Accuracy analysis 4.2.2.1. Measuring device accuracy and precision 4.2.2.2. Digital uncertainties and errors 4.3. Seismic measurements on-site 4.3.1. On-site noise conditions (HERA) 4.3.1.1. ALPS IIa laboratory (HERA West) 4.3.1.2. ALPS IIc site (HERA North) 4.3.1.3. Reference (HERA South) 4.3.2. Optic-related components of the ALPS II experiment 4.3.2.1. Optical tables 4.3.2.2. CBB and mirror mountings 4.3.3. Associated noise sources 4.3.3.1. Dipole magnet girders 4.3.3.2. Filter Fan Units 4.4. Filtering of signal 4.4.1. Spatial transfer functions 4.4.2. Low-pass filter due to the cavity pole frequency 4.4.3. Filter by the control loop 4.5. Data evaluation 4.5.1. Specifications for the ALPS IIa isolation 4.5.2. Specifications for an ALPS IIc isolation 4.5.3. Specifications for a JURA isolation 5. Development of seismic isolation systems 5.1. Procedure for handling seismic noise and isolation problems 5.2. State-of-the-art seismic isolation concepts 5.2.1. The LIGO system 5.2.2. The VIRGO system 5.3. Development of a seismic isolation system 5.3.1. CAD draft of a test model 5.3.2. FEM simulations 5.3.3. Design drawing 5.3.4. Evaluation and validation 5.4. Seismic isolation concept for ALPS IIc and JURA 6. Conclusion 6.1. Summary 6.2. Outlook , Sprache der Zusammenfassungen: Englisch, Deutsch
    Location: Lower compact magazine
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Call number: S 99.0139(364)
    In: Wissenschaftliche Arbeiten der Fachrichtung Geodäsie und Geoinformatik der Leibniz Universität Hannover, Nr. 364
    Type of Medium: Series available for loan
    Pages: XVI, 121 Seiten , Illustrationen, Diagramme
    ISBN: 978-3-7696-5268-0
    Series Statement: Wissenschaftliche Arbeiten der Fachrichtung Geodäsie und Geoinformatik der Universität Hannover Nr. 364
    Language: English
    Note: Zusammenfassung in englisch und deutsch Seite v-vii
    Location: Lower compact magazine
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Call number: S 99.0139(332)
    In: Wissenschaftliche Arbeiten der Fachrichtung Geodäsie und Geoinformatik der Leibniz Universität Hannover, Nr. 332
    Type of Medium: Series available for loan
    Pages: x, 199 Seiten , Illustrationen, Diagramme
    ISSN: 0174-1454
    Series Statement: Wissenschaftliche Arbeiten der Fachrichtung Geodäsie und Geoinformatik der Leibniz Universität Hannover Nr. 332
    Language: German
    Note: Dissertation, Gottfried Wilhelm Leibniz Universität Hannover, 2017 , Inhaltsverzeichnis Inhaltsverzeichnis 1 Einleitung 1.1 Motivation 1.2 Stand der Forschung 1.3 Zielsetzung und Aufbau der Arbeit 2 Grundlagen 2.1 Grundlagen der physikalischen Geodäsie 2.1.1 Das Schwerefeld der Erde 2.1.2 Gravitationspotential - Kugelfunktionsentwicklung und Fehler 2.1.3 Ableitungen des Gravitationspotentials 2.1.4 Satellitengradiometrie 2.1.5 Zeiten 2.2 Ausgewählte Grundlagen der Statistik und digitalen SignalVerarbeitung 2.2.1 Deskriptive Statistik 2.2.2 Aspekte der digitalen Signalverarbeitung 2.2.3 Filterung 2.2.4 Spektralschätzung 2.3 Drehmatrizen, Eulerwinkel und Quaternionen 2.4 Methodische Grundlagen der Kreuzungspunktanalyse 2.4.1 Bestimmung von Kreuzungspunkten 2.4.2 Kreuzungspunktposition und Interpolationen 3 Die GOCE-Mission 3.1 Wahl des GOCE-Orbits 3.2 Gradiometer und Gravitationsgradienten 3.2.1 Gradiometeraufbau und Beschleunigungsmesser 3.2.2 Gravitationsgradienten aus Beschleunigungsdifferenzen 3.2.3 Einschränkungen und Fehler des Gradiometers 3.3 Weiteres Instrumentarium im GOCE-Satelliten 3.4 Koordinatensysteme und Transformationen 3.4.1 GOCE-relevante Koordinatensysteme 3.4.2 Transformationen zwischen Koordinatensystemen 3.5 Datenprodukte und deren Genauigkeiten 4 Genauigkeitsanforderungen an Datenprodukte und Rechenoperationen 4.1 Analyse der GOCE-Gravitationsgradienten 4.1.1 Gradienten und Fehler in Zeit- und Frequenzbereich 4.1.2 Vergleich der Gradienten mit globalen Gravitationsfeldmodellen 4.2 Abschätzung der Genauigkeit der Gravitationsgradienten 4.3 Bestimmung der Genauigkeitsanforderungen 5 Methodik zur Gradienten-Validierung in Kreuzungspunkten 5.1 Übersicht zum Ablauf der Validierung 5.2 Kreuzungspunktbestimmung 5.2.1 Ziele und Methodik 5.2.2 Beschreibung des Algorithmus und Implementierung 5.3 Interpolation der Beobachtungsgrößen 5.3.1 Interpolation der reduziert-dynamischen Positionen 5.3.2 Interpolation der finalen Kreuzungspunktpositionen 5.3.3 Interpolation weiterer Datenprodukte im Kreuzungspunkt 5.4 Vergleichskoordinatensystem 5.5 Transformation des Tensors der GOCE-Gravitationsgradienten 5.5.1 Rotation des GOCE-GGT (Einfügen modellbasierter Vij, Filterung) 5.5.2 Translation des Tensors der GOCE-Gravitationsgradienten 5.5.3 Transformation und Diskussion 5.6 Closed-Loop-Test 6 Analyse der Kreuzungspunktdifferenzen 6.1 Einleitung 6.2 Qualität des Gesamtdatensatzes 6.2.1 Statistische Parameter 6.2.2 Korrelationen und Abhängigkeiten 6.3 Regionale Untersuchungen 6.4 Lokale Artefakte mit zeitlich begrenztem Einfluss auf die Gradienten 6.5 Zusammenfassung und Diskussion 7 Gradiometerkonzepte zukünftiger Schwerefeld-Satellitenmissionen 7.1 Missionsplanung und bisherige Studien 7.2 Gradiometriekonzepte und Technologien 7.2.1 Feste Testmassen und deren Lagebestimmung sowie Lageregelung 7.2.2 Atominterferometrie auf Basis kalter Atome 7.3 Kombinierte Beobachtungskonzepte und Bestimmung dritter Ableitungen 7.4 Zusammenfassung 8 Zusammenfassung und Ausblick Abkürzungsverzeichnis Literaturverzeichnis
    Location: Lower compact magazine
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Call number: S 99.0139(337)
    In: Wissenschaftliche Arbeiten der Fachrichtung Geodäsie und Geoinformatik der Leibniz Universität Hannover, Nr. 337
    Type of Medium: Series available for loan
    Pages: 151 Seiten , Illustrationen, Diagramme
    ISSN: 0174-1454
    Series Statement: Wissenschaftliche Arbeiten der Fachrichtung Geodäsie und Geoinformatik der Leibniz Universität Hannover Nr. 337
    Language: German
    Note: Dissertation, Gottfried Wilhelm Leibniz Universität Hannover, 2017 , Inhaltsverzeichnis 1 Einleitung 1.1 Zielsetzung 1.2 Struktur 2 Grundlagen und Stand der Forschung 2.1 Mobile Mapping Systeme 2.1.1 Allgemeine Funktionsweise 2.1.2 Riegl VMX-250 2.1.3 Alternative Systeme 2.2 Punktwolken 2.2.1 Definition 2.2.2 Abgrenzung zu vermaschten Punkten 2.2.3 Speicherformate von Punktwolken 2.2.4 Visualisierungstechniken 2.2.5 Level Of Detail 2.3 Farbmodelle 2.3.1 Farbanpassung 2.4 Verteiltes Rechnen 2.5 Verdeckungsanalyse 2.6 Registrierung mehrerer Datensätze 2.7 Visualisierungssysteme 2.7.1 Standalone Point Cloud Viewer 2.7.2 Webbasierte Systeme 3 Effizienzbetrachtungen 3.1 Effiziente Verarbeitung von Massendaten durch Parallelisierung 3.1.1 Parallelisierungsformen 3.1.2 Umsetzung 3.1.3 Vergleich 3.2 Effiziente Datenstrukturen 3.2.1 Scanstreifen 3.2.2 Scanstreifenbasierte Pufferstrategie 3.2.3 Rasterdatenstruktur 3.2.4 Randproblematik und Caching 4 Modulare Verarbeitungskette f ̈ur Mobile Mapping Daten 4.1 Analyse der beteiligten Komponenten des Herstellerworkflows 4.2 Exemplarische modulare Verarbeitungskette 4.3 Vorverarbeitungsmodul 4.3.1 Vereinfachung 4.3.2 Zeitsegmentierung 4.3.3 Bestimmung von Punktattributen 4.4 Segmentierung und Klassifikation 4.4.1 Bodenextraktion 4.4.2 Objektsegmentierung 5 Sensordatenintegration: Kalibrierung der Kameraorientierung 5.1 Zeitstempelabweichung 5.2 Ansatz 5.3 Extraktion von Silhouetten 5.3.1 Extraktion von Silhouetten aus Kamerabildern 5.3.2 Extraktion von Silhouetten aus Laserscandaten 5.4 ICP-basierte Identifikation der Korrespondenzen 5.4.1 Beschränkung der Scanpunktbildsilhouette 5.4.2 Gruppierung der Scanpunktdaten 5.4.3 ICP unter Berücksichtigung der Punktnormalen 5.5 Bestimmung der Kameraparameter mittels Rückwärtsschnitt 5.5.1 Wahl der Stichprobe 5.5.2 Anzahl an Iterationen 5.5.3 Bewertung der gefundenen Modelle 5.6 Ergebnisse 5.7 Verbesserungspotential und Probleme 5.7.1 Laufzeiten 5.7.2 Robustheit des Verfahrens und Qualität der Ergebnisse 6 Farbbestimmung 6.1 Farbextraktion 6.2 Verdeckungsanalyse 6.2.1 Geometrische Verdeckungsanalyse 6.2.2 Ballbasierter Tiefenpuffer 6.2.3 Ergebnisse 6.2.4 Nicht erfasste und dynamische Objekte 6.3 Farbanpassung 6.3.1 Einfärbesituationen benachbarter Scanpunkte 6.3.2 Objektweise Farbanpassung 6.3.3 IDP-Interpolierte radiometrische Helligkeitsanpassung von Bodenpunkten 6.3.4 Radiometrische Helligkeits- und Sättigungsanpassung von Objektpunkten 6.4 Farbsynthese 6.4.1 Histogrammbasierte Farbinterpolation 6.4.2 Ergebnis 7 Aus Punktwolken abgeleitete Modelle 7.1 3D Modelle 7.1.1 Identifikation planarer Bereiche 7.1.2 Nachbearbeitung der erstellten Texturen 7.1.3 Effiziente Verwaltung von Texturen 7.1.4 Erhöhung der Speichereffizienz 7.1.5 Level of Detail 7.2 2D Modelle 7.2.1 Trackjektorienabschnitte 7.2.2 Ermittlung relevanter Ebenen 7.2.3 Ergebnis 8 Visualisierung von Mobile Mapping Daten 8.1 3D Visualisierung 8.1.1 Visualisierung via Web-App 8.1.2 Performante Client-Server Kommunikation und Serialisierung 8.1.3 Scheduling der LOD-Daten 8.1.4 GUI Responsiveness 8.1.5 Navigation und Nutzerinteraktion 8.2 2D Visualisierung 8.2.1 Parallax Scrolling Visualisierung via Android-App 8.2.2 Beleuchtungsmodell 8.2.3 Ergebnis und Ausblick 9 Schlussfolgerungen und Ausblick 9.1 Ausblick Literaturverzeichnis
    Location: Lower compact magazine
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Call number: S 99.0139(347)
    In: Wissenschaftliche Arbeiten der Fachrichtung Geodäsie und Geoinformatik der Leibniz Universität Hannover, Nr. 347
    Type of Medium: Series available for loan
    Pages: 152 Seiten , Illustrationen, Diagramme
    ISSN: 0174-1454
    Series Statement: Wissenschaftliche Arbeiten der Fachrichtung Geodäsie und Geoinformatik der Leibniz Universität Hannover Nr. 347
    Language: German
    Note: Dissertation, Gottfried Wilhelm Leibniz Universität Hannover, 2018 , Inhaltsverzeichnis 1 Einleitung 1.1 Motivation 1.2 Zielsetzung der Arbeit 1.3 Wissenschaftliche Beiträge 1.4 Gliederung 2 Grundlagen 2.1 Graphentheorie 2.1.1 Struktur 2.1.2 Der Algorithmus von Dijkstra 2.2 Der Algorithmus von Viterbi 2.3 Simulated Annealing 3 Unüberwachtes Lernen 3.1 Dichteschätzung 3.1.1 Parametrisierte Schätzer 3.1.2 Nichtparametrisierte Schätzer 3.1.3 Mischverteilungen 3.1.4 Zusammenfassung 3.2 Monte Carlo Methoden 3.2.1 Inversionsmethode 3.2.2 Verwerfungsmethode 3.3 Markov-Chain-Monte-Carlo Methoden 3.3.1 Markov-Ketten 3.3.2 Der Metropolis-Hastings-Algorithmus 3.4 Reversible Jump MCMC Methoden 4 Stand der Forschung 4.1 Digitale Straßenkarten 4.2 Rekonstruktion fahrbahngenauer Straßenkarten 4.2.1 Punktwolkenanalyse 4.2.2 Inkrementelle Trajektorien Analyse 4.2.3 Analyse charakteristischer Punkte 4.2.4 Verfahren nach Biagioni und Eriksson 4.2.5 Verfahren nach Cao und Krumm 4.3 Rekonstruktion fahrspurgenauer Straßenkarten 4.3.1 Fahrerassistenzsysteme 4.3.2 Naive Verfahren 4.3.3 Komplexe Verfahren 5 Verfahren zur automatischen Konstruktion hochgenauer Straßenkarten 5.1 Überblick 5.2 Segmentierung von Fahrzeugtrajektorien 5.3 Rekonstruktion fahrbahngenauer Straßenkarten 5.3.1 Initialisierung 5.3.2 Reversible Jump Markov Chain Monte Carlo 5.3.3 Algorithmus 5.3.4 Bewertung 5.4 Rekonstruktion fahrspurgenauer Straßenkarten 5.4.1 Modell 5.4.2 Initialisierung 5.4.3 Reversible Jump Markov Chain Monte Carlo 5.4.4 Algorithmus 5.4.5 Bewertung 6 Ergebnisse 6.1 Eingabedatensätze 6.2 Referenz Datensatz 6.3 Bewertungen 6.4 Fahrbahngenaue Rekonstruktion 6.4.1 Analyse des Verfahrens 6.4.2 Bewertung der Ergebnisse 6.5 Fahrspurgenaue Rekonstruktion 6.5.1 Analyse des Verfahrens 6.5.2 Bewertung der Ergebnisse 7 Zusammenfassung und Ausblick Anhang A. Literaturverzeichnis B Mathematische Definitionen C Eingabedaten D Dokumente E Danksagung F Widmung G Lebenslauf , Zusammenfassung in Englisch und Deutsch Seite 1-3
    Location: Lower compact magazine
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Call number: S 99.0139(377)
    In: Wissenschaftliche Arbeiten der Fachrichtung Geodäsie und Geoinformatik der Leibniz Universität Hannover, Nr. 377
    Type of Medium: Series available for loan
    Pages: XVI, 146 Seiten , Diagramme, Illustrationen, Karten
    ISBN: 978-3-7696-5295-6 , 9783769652956
    ISSN: 0065-5325
    Series Statement: Wissenschaftliche Arbeiten der Fachrichtung Geodäsie und Geoinformatik der Leibniz Universität Hannover Nr. 377
    Language: English , German
    Note: Dissertation, Gottfried Wilhelm Leibniz Universität Hannover, 2021 , Contents 1. Introduction 1.1. Motivation 1.2. Goal and Contributions 1.3. Structure of this Thesis 2. Fundamentals 2.1. Classification 2.2. Artificial Neural Network 2.2.1. Perceptron 2.2.2. Multilayer Percptrons 2.2.3. Training 2.2.3.1. Loss Function 2.2.3.2. Gradient Descent Optimization 2.2.3.3. Step Learning Policy 2.3. Convolution Neural Networks 2.3.1. Components 2.3.1.1. Convolution 2.3.1.2. Pooling 2.3.1.3. Batch Normalization 2.3.2. CNN for Image Classification 2.3.3. CNN for Semantic Segmentation 2.3.3.1. Fully Convolution Networks 2.3.3.2. U-Net 2.3.4. Training 2.3.5. Data Augmentation 3. Related Work 3.1. CNN in general 3.1.1. Image Classification 3.1.2. Semantic Segmentation 3.2. Land Cover Classification 3.3. Land Use Classification 3.3.1. Methods not based on CNN 3.3.2. CNN-based Methods 3.4. Discussion 3.4.1. Land Cover Classification 3.4.2. Land Use Classification 4. Methodology 4.1. Overview 4.2. Land Cover Classification 4.2.1. Network Architecture 4.2.2. Network Variants 4.2.2.1. Network without skip-connections 4.2.2.2. Network with elementwise addition skip-connections 4.2.2.3. Network with learnable skip-connections 4.2.3. Training 4.3. Hierarchical Land Use Classification 4.3.1. Polygon Shape Representation 4.3.2. Patch Preparation 4.3.2.1. Tiling 4.3.2.2. Scaling 4.3.2.3. Combination of tiling and scaling 4.3.3. Network Architecture 4.3.3.1. Base Network for Mask Representation: LuNet-lite 4.3.3.2. LuNet-lite with Multi-Task Learning 4.3.3.3. Achieving Consistency with the Class Hierarchy 4.3.3.4. Network Architecture for Implicit Representation 4.3.4. Training 4.3.4.1. LuNet-lite 4.3.4.2. LuNet-lite-MT 4.3.4.3. LuNet-lite-JO and LuNet-lite-BG-JO 4.3.5. Inference at Object Level 5. Datasets and Test Setup 5.1. Datasets 5.1.1. Hameln 5.1.2. Schleswig 5.1.3. Mecklenburg-Vorpommern (MV) 5.1.4. Vaihingen and Potsdam 5.2. Evaluation Metrics 5.3. Experimental Setup 5.3.1. Land Cover Classification 5.3.1.1. Test Setup 5.3.1.2. Overview of all Experiments 5.3.1.3. Prediction Variability of FuseNet-lite 5.3.1.4. Impact of the Hyperparameter Settings 5.3.1.5. Effectiveness of the learnable Skip-Connections 5.3.1.6. Performance of FuseNet-lite 5.3.1.7. Combining Datasets 5.3.2. Land Use Classification 5.3.2.1. Input Configurations 5.3.2.2. Test Setup 5.3.2.3. Overview of all Experiments 5.3.2.4. Prediction Variability of LuNet-lite-JO 5.3.2.5. Impact of the Hyperparameter Settings 5.3.2.6. Impact of Joint Optimization 5.3.2.7. Impact of the Polygon Representation 5.3.2.8. Impact of Land Cover Information 5.3.2.9. Impact of the Patch Generation 5.3.2.10. Evaluation on all Datasets 5.3.2.11. Combining Datasets 6. Experiments 6.1. Evaluation of Land Cover Classification 6.1.1. Prediction Variability of FuseNet-lite 6.1.2. Investigations of the Hyperparameter Settings 6.1.2.1. Base Learning Rate 6.1.2.2. Mini Batch Size 6.1.2.3. The Weight of the Penalty Term in the Focal Loss 6.1.3. Effectiveness of the learnable Skip-Connections 6.1.4. Evaluation on the individual Datasets 6.1.4.1. Hameln, Schleswig and MV 6.1.4.2. Vaihingen and Potsdam 6.1.4.3. Answers to the Questions raised in Section 5.3.1.6 6.1.5. Training on the combined Datasets 6.1.6. Discussion 6.2. Evaluation of Land Use Classification 6.2.1. Prediction Variability of LuNet-lite-JO 6.2.2. Investigations of the Hyperparameter Settings 6.2.2.1. Base Learning Rate 6.2.2.2. Mini Batch Size 6.2.2.3. The Weight of the Penalty Term in the Focal Loss 6.2.3. Impact of Joint Optimization 6.2.4. Impact of the Polygon Representation 6.2.5. Impact of Land Cover Information 6.2.6. Impact of the Patch Generation Approach 6.2.7. Evaluation on all Datasets 6.2.8. Training on combined Datasets 6.2.9. Discussion 7. Conclusion and Outlook 7.1. Conclusion 7.2. Outlook References , Sprache der Kurzfassungen: Englisch, Deutsch
    Location: Lower compact magazine
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Call number: S 99.0139(355)
    In: Wissenschaftliche Arbeiten der Fachrichtung Geodäsie und Geoinformatik der Leibniz Universität Hannover, Nr. 355
    Type of Medium: Series available for loan
    Pages: 210 Seiten , Diagramme
    ISBN: 978-3-7696-5264-2 , 9783769652642
    ISSN: 0065-5325
    Series Statement: Wissenschaftliche Arbeiten der Fachrichtung Geodäsie und Geoinformatik der Leibniz Universität Hannover Nr. 355
    Language: German
    Note: Dissertation, Gottfried Wilhelm Leibniz Universität Hannover, 2019 , Inhaltsverzeichnis 1 Einleitung 1.1 Motivation und Zielsetzung 1.2 Gliederung 2 Mathematische Grundlagen 2.1 Freiform-Kurven 2.1.1 PolynomialeFunktionen 2.1.2 Splines 2.1.3 Stellgrößen 2.2 Schätztheorie 2.2.1 Methode der kleinsten Quadrate 2.2.2 M-Schätzung 2.2.3 Verschiedene (robuste) M-Schätzer 2.2.4 Lösungsalgorithmus für die M-Schätzung 3 Modellierung und Schätzung von B-Spline-Kurven 3.1 Modellwahl 3.1.1 Informationskriterien 3.1.2 Hypothesentests 3.1.3 Structural Risk Minimization 3.1.4 Zusammenfassung Modellwahl 3.2 Parametrisierung 3.2.1 Deterministische Methoden 3.2.2 Iterative Methoden 3.2.3 Zusammenfassung Parametrisierung 3.3 Knotenvektorwahl 3.3.1 Deterministische Methoden 3.3.2 Heuristische Methoden 3.3.3 Zusammenfassung Knotenvektorwahl 3.4 KontrollpunktSchätzung 3.4.1 Reine Kontrollpunktschätzung 3.4.2 Erweiterte Kontrollpunktschätzung 3.4.3 Zusammenfassung Kontrollpunktschätzung 4 Methodische Innovation Knotenvektorwahl 4.1 Residuenbasierter Iterativer Update (RIU) Algorithmus 4.1.1 Methodik. 4.2 Evolutionäre Monte-Carlo (EMC) Methode 4.2.1 Methodik 4.2.2 Parameterwahl 4.3 Elitärer genetischer Algorithmus 4.3.1 Methodik 4.3.2 Modifikationen 4.3.3 Parameterwähl 5 Numerische Beurteilung und Validierung der Knotenvektorwahl 5.1 Simulation 5.1.1 Ablauf der Simulation 5.1.2 Testdatensätze 5.1.3 Rauschmodell 5.2 Konvergenzverhalten der verschiedenen Modifikationen beim EGA 5.3 Präzision und Richtigkeit der verschiedenen Methoden zur Knotenvektorwahl 5.3.1 Ergebnisse 5.3.2 Zusammenfassung 5.4 Sensitivitätsanalyse der Kontrollpunktschätzung 5.4.1 Ergebnisse 5.4.2 Zusammenfassung 5.5 Abweichende Modellwahl 5.5.1 Ergebnisse 5.5.2 Zusammenfassung 5.6 Reale Datensätze - Kreuzvalidierung 5.6.1 Datensätze 5.6.2 KreuzValidierung 5.6.3 Ergebnisse 5.6.4 Zusammenfassung 6 Numerische Beurteilung der B-Spline-Approximation bei Ausreißern 6.1 Rauschmodelle 6.2 Ergebnisse Knotenvektormethoden 6.2.1 Zusammenfassung 6.3 Sensitivitätsanalyse der Kontrollpunktschätzung bei ausreißerbehafteten Datensätzen 6.4 Belastbarkeit der Schätzer 6.4.1 Zusammenfassung 7 Fazit und Ausblick 7.1 Fazit 7.2 Ausblick A Anhang A.l Simulierte B-spline Kurven A.2 Numerische Beurteilung und Validierung der Knotenvektorwahl A.3 Numerische Beurteilung der B-Spline-Approximation bei Ausreißern Literaturverzeichnis Abbildungsverzeichnis Tabellenverzeichnis Algorithmenverzeichnis Lebenslauf , Kurzfassungen in deutscher und englischer Sprache
    Location: Lower compact magazine
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...