ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © IEEE, 2008. This article is posted here by permission of IEEE for personal use, not for redistribution. The definitive version was published in IEEE Journal of Oceanic Engineering 33 (2008): 198-209, doi:10.1109/JOE.2008.920471.
    Description: Underwater acoustic (UWA) channels are wideband in nature due to the small ratio of the carrier frequency to the signal bandwidth, which introduces frequency-dependent Doppler shifts. In this paper, we treat the channel as having a common Doppler scaling factor on all propagation paths, and propose a two-step approach to mitigating the Doppler effect: 1) nonuniform Doppler compensation via resampling that converts a "wideband" problem into a "narrowband" problem and 2) high-resolution uniform compensation of the residual Doppler. We focus on zero-padded orthogonal frequency-division multiplexing (OFDM) to minimize the transmission power. Null subcarriers are used to facilitate Doppler compensation, and pilot subcarriers are used for channel estimation. The receiver is based on block-by-block processing, and does not rely on channel dependence across OFDM blocks; thus, it is suitable for fast-varying UWA channels. The data from two shallow-water experiments near Woods Hole, MA, are used to demonstrate the receiver performance. Excellent performance results are obtained even when the transmitter and the receiver are moving at a relative speed of up to 10 kn, at which the Doppler shifts are greater than the OFDM subcarrier spacing. These results suggest that OFDM is a viable option for high-rate communications over wideband UWA channels with nonuniform Doppler shifts.
    Description: B. Li and S. Zhou are supported by the ONR YIP grant N00014-07-1-0805 and the NSF grant ECCS-0725562. M. Stojanovic is supported by the ONR grant N00014-07-1-0202. L. Freitag is supported by the ONR grants N00014- 02-6-0201 and N00014-07-1-0229. P. Willett is supported by the ONR grant N00014-07-1-0055.
    Keywords: Underwater acoustic communication ; Multicarrier modulation ; OFDM ; Wideband channels
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...