ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Submerged paddy  (1)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Plant and soil 72 (1983), S. 107-116 
    ISSN: 1573-5036
    Keywords: Absorption ; Concentration ; CaCO3-free ; CaCO3-treated ; Distribution ; Submerged paddy
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary To study the interaction effect of Zn and Fe in paddy, a greenhouse experiment was conducted at H. P. Agricultural University, Palampur (India). Zinc was applied as ZnSO4·7H2O at the rate of 0, 5, 10 and 20 ppm, and Fe as FeSO4·3H2O at the rate of 0,25 and 50 ppm. Only 5 ppm of added Zn increased the grain and straw yields when Fe was not applied, but when Fe was applied, even 10 ppm of added Zn responded significantly. The grain and straw yields were higher in the presence of CaCO3 than in its absence. The concentration of zinc increased with the application of Zn and decreased with the application of Fe. The rice straw contained the highest concentration of Zn (20.1 ppm), whereas rice grain contained the lowest (14.3 ppm). The Fe concentration in rice plants increased with increasing levels of applied Zn. The highest concentration (343 ppm) of Fe was recorded in rice straw and lowest in rice grains (165 ppm). The concentrations of Zn and Fe were lower in the presence of CaCO3 than in its absence. The respective absorption of Zn and Fe were 8 and 7 percent up to tillering stage, 56 and 59 percent between tillering and flowering stages, and 36 and 34 percent between flowering and maturity. At maturity, about 70 and 78 percent of the Zn and Fe taken up were retained by rice straw and 30 and 22 percent by rice grains, respectively. When more Zn was applied, less Zn was translocated to grains; when more Fe was applied, more Zn was translocated to grains. The effects of Fe and Zn on Fe distribution at maturity were opposite to that of Zn distribution.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...