ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2012-09-14
    Description: Author(s): Andrew F. May, Michael A. McGuire, Huibo Cao, Ilya Sergueev, Claudia Cantoni, Bryan C. Chakoumakos, David S. Parker, and Brian C. Sales [Phys. Rev. Lett. 109, 119902] Published Thu Sep 13, 2012
    Keywords: Errata
    Print ISSN: 0031-9007
    Electronic ISSN: 1079-7114
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-10-10
    Description: Author(s): David Parker, Andrew F. May, Hsin Wang, Michael A. McGuire, Brian C. Sales, and David J. Singh [Phys. Rev. B 88, 159902] Published Wed Oct 09, 2013
    Keywords: Errata
    Print ISSN: 1098-0121
    Electronic ISSN: 1095-3795
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2008-04-19
    Description: The association of genetic variation with disease and drug response, and improvements in nucleic acid technologies, have given great optimism for the impact of 'genomic medicine'. However, the formidable size of the diploid human genome, approximately 6 gigabases, has prevented the routine application of sequencing methods to deciphering complete individual human genomes. To realize the full potential of genomics for human health, this limitation must be overcome. Here we report the DNA sequence of a diploid genome of a single individual, James D. Watson, sequenced to 7.4-fold redundancy in two months using massively parallel sequencing in picolitre-size reaction vessels. This sequence was completed in two months at approximately one-hundredth of the cost of traditional capillary electrophoresis methods. Comparison of the sequence to the reference genome led to the identification of 3.3 million single nucleotide polymorphisms, of which 10,654 cause amino-acid substitution within the coding sequence. In addition, we accurately identified small-scale (2-40,000 base pair (bp)) insertion and deletion polymorphism as well as copy number variation resulting in the large-scale gain and loss of chromosomal segments ranging from 26,000 to 1.5 million base pairs. Overall, these results agree well with recent results of sequencing of a single individual by traditional methods. However, in addition to being faster and significantly less expensive, this sequencing technology avoids the arbitrary loss of genomic sequences inherent in random shotgun sequencing by bacterial cloning because it amplifies DNA in a cell-free system. As a result, we further demonstrate the acquisition of novel human sequence, including novel genes not previously identified by traditional genomic sequencing. This is the first genome sequenced by next-generation technologies. Therefore it is a pilot for the future challenges of 'personalized genome sequencing'.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wheeler, David A -- Srinivasan, Maithreyan -- Egholm, Michael -- Shen, Yufeng -- Chen, Lei -- McGuire, Amy -- He, Wen -- Chen, Yi-Ju -- Makhijani, Vinod -- Roth, G Thomas -- Gomes, Xavier -- Tartaro, Karrie -- Niazi, Faheem -- Turcotte, Cynthia L -- Irzyk, Gerard P -- Lupski, James R -- Chinault, Craig -- Song, Xing-zhi -- Liu, Yue -- Yuan, Ye -- Nazareth, Lynne -- Qin, Xiang -- Muzny, Donna M -- Margulies, Marcel -- Weinstock, George M -- Gibbs, Richard A -- Rothberg, Jonathan M -- U54 HG003273/HG/NHGRI NIH HHS/ -- England -- Nature. 2008 Apr 17;452(7189):872-6. doi: 10.1038/nature06884.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18421352" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Computational Biology ; Genetic Predisposition to Disease/genetics ; Genetic Variation/*genetics ; Genome, Human/*genetics ; Genomics/economics/*methods/trends ; Genotype ; Humans ; Individuality ; Male ; Oligonucleotide Array Sequence Analysis ; Polymorphism, Single Nucleotide/genetics ; Reproducibility of Results ; Sensitivity and Specificity ; Sequence Alignment ; Sequence Analysis, DNA/economics/*methods ; Software
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2013-03-30
    Description: Vaccine development to induce broadly neutralizing antibodies (bNAbs) against HIV-1 is a global health priority. Potent VRC01-class bNAbs against the CD4 binding site of HIV gp120 have been isolated from HIV-1-infected individuals; however, such bNAbs have not been induced by vaccination. Wild-type gp120 proteins lack detectable affinity for predicted germline precursors of VRC01-class bNAbs, making them poor immunogens to prime a VRC01-class response. We employed computation-guided, in vitro screening to engineer a germline-targeting gp120 outer domain immunogen that binds to multiple VRC01-class bNAbs and germline precursors, and elucidated germline binding crystallographically. When multimerized on nanoparticles, this immunogen (eOD-GT6) activates germline and mature VRC01-class B cells. Thus, eOD-GT6 nanoparticles have promise as a vaccine prime. In principle, germline-targeting strategies could be applied to other epitopes and pathogens.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3689846/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3689846/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jardine, Joseph -- Julien, Jean-Philippe -- Menis, Sergey -- Ota, Takayuki -- Kalyuzhniy, Oleksandr -- McGuire, Andrew -- Sok, Devin -- Huang, Po-Ssu -- MacPherson, Skye -- Jones, Meaghan -- Nieusma, Travis -- Mathison, John -- Baker, David -- Ward, Andrew B -- Burton, Dennis R -- Stamatatos, Leonidas -- Nemazee, David -- Wilson, Ian A -- Schief, William R -- 5T32AI007606-10/AI/NIAID NIH HHS/ -- AI081625/AI/NIAID NIH HHS/ -- AI33292/AI/NIAID NIH HHS/ -- AI84817/AI/NIAID NIH HHS/ -- P01 AI094419/AI/NIAID NIH HHS/ -- P30 AI027767-24/AI/NIAID NIH HHS/ -- P41RR001209/RR/NCRR NIH HHS/ -- R01 AI033292/AI/NIAID NIH HHS/ -- R01 AI073148/AI/NIAID NIH HHS/ -- R01 AI081625/AI/NIAID NIH HHS/ -- R01 AI084817/AI/NIAID NIH HHS/ -- R37 AI033292/AI/NIAID NIH HHS/ -- T32 CA080416/CA/NCI NIH HHS/ -- T32CA080416/CA/NCI NIH HHS/ -- UM1 AI100663/AI/NIAID NIH HHS/ -- Y1-CO-1020/CO/NCI NIH HHS/ -- Y1-GM-1104/GM/NIGMS NIH HHS/ -- Canadian Institutes of Health Research/Canada -- New York, N.Y. -- Science. 2013 May 10;340(6133):711-6. doi: 10.1126/science.1234150. Epub 2013 Mar 28.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23539181" target="_blank"〉PubMed〈/a〉
    Keywords: AIDS Vaccines/chemistry/genetics/*immunology ; Amino Acid Sequence ; Animals ; Antibodies, Neutralizing/immunology ; Antigens, CD4/immunology ; B-Lymphocytes/immunology ; Crystallography, X-Ray ; DNA Mutational Analysis ; Germ Cells/*immunology ; HIV Envelope Protein gp120/chemistry/genetics/*immunology ; HIV Infections/*prevention & control ; HIV-1/*immunology ; Humans ; Macaca ; Mice ; Models, Animal ; Molecular Sequence Data ; Nanoparticles ; Protein Engineering ; Protein Structure, Tertiary ; Receptors, Antigen, B-Cell/*immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-10-17
    Description: Human skin relies on cutaneous receptors that output digital signals for tactile sensing in which the intensity of stimulation is converted to a series of voltage pulses. We present a power-efficient skin-inspired mechanoreceptor with a flexible organic transistor circuit that transduces pressure into digital frequency signals directly. The output frequency ranges between 0 and 200 hertz, with a sublinear response to increasing force stimuli that mimics slow-adapting skin mechanoreceptors. The output of the sensors was further used to stimulate optogenetically engineered mouse somatosensory neurons of mouse cortex in vitro, achieving stimulated pulses in accordance with pressure levels. This work represents a step toward the design and use of large-area organic electronic skins with neural-integrated touch feedback for replacement limbs.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tee, Benjamin C-K -- Chortos, Alex -- Berndt, Andre -- Nguyen, Amanda Kim -- Tom, Ariane -- McGuire, Allister -- Lin, Ziliang Carter -- Tien, Kevin -- Bae, Won-Gyu -- Wang, Huiliang -- Mei, Ping -- Chou, Ho-Hsiu -- Cui, Bianxiao -- Deisseroth, Karl -- Ng, Tse Nga -- Bao, Zhenan -- New York, N.Y. -- Science. 2015 Oct 16;350(6258):313-6. doi: 10.1126/science.aaa9306.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Electrical Engineering, Stanford University, Stanford, CA, USA. ; Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA. ; Department of Bioengineering, Stanford University, Stanford, CA, USA. ; Department of Chemistry, Stanford University, Stanford, CA, USA. ; Department of Chemical Engineering, Stanford University, Stanford, CA, USA. ; Xerox Palo Alto Research Center, Palo Alto, CA, USA. ; Department of Chemical Engineering, Stanford University, Stanford, CA, USA. zbao@stanford.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26472906" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cerebral Cortex/cytology/physiology ; Hand/anatomy & histology/innervation/physiology ; Humans ; In Vitro Techniques ; *Mechanoreceptors ; Mice ; *Neural Prostheses ; Optogenetics ; Pressure ; Skin/*innervation ; *Touch ; Transcutaneous Electric Nerve Stimulation/*methods ; Transistors, Electronic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...