ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2002-01-19
    Description: Mycobacterium tuberculosis (Mtb) mounts a stubborn defense against oxidative and nitrosative components of the immune response. Dihydrolipoamide dehydrogenase (Lpd) and dihydrolipoamide succinyltransferase (SucB) are components of alpha-ketoacid dehydrogenase complexes that are central to intermediary metabolism. We find that Lpd and SucB support Mtb's antioxidant defense. The peroxiredoxin alkyl hydroperoxide reductase (AhpC) is linked to Lpd and SucB by an adaptor protein, AhpD. The 2.0 angstrom AhpD crystal structure reveals a thioredoxin-like active site that is responsive to lipoamide. We propose that Lpd, SucB (the only lipoyl protein detected in Mtb), AhpD, and AhpC together constitute a nicotinamide adenine dinucleotide (reduced)-dependent peroxidase and peroxynitrite reductase. AhpD thus represents a class of thioredoxin-like molecules that enables an antioxidant defense.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bryk, R -- Lima, C D -- Erdjument-Bromage, H -- Tempst, P -- Nathan, C -- HL61241/HL/NHLBI NIH HHS/ -- P30 CA08748/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2002 Feb 8;295(5557):1073-7. Epub 2002 Jan 17.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY 10021, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11799204" target="_blank"〉PubMed〈/a〉
    Keywords: Acyltransferases/*metabolism ; Amino Acid Sequence ; Antioxidants ; Binding Sites ; Catalysis ; Cloning, Molecular ; Crystallization ; Crystallography, X-Ray ; Dihydrolipoamide Dehydrogenase/*metabolism ; Hydrogen Bonding ; Hydrogen Peroxide/metabolism ; Models, Molecular ; Molecular Sequence Data ; Mycobacterium tuberculosis/*enzymology/genetics/metabolism ; NAD/metabolism ; Oxidation-Reduction ; Oxidoreductases/*metabolism ; Peroxidases/*chemistry/*metabolism ; Peroxiredoxins ; Peroxynitrous Acid/metabolism ; Protein Conformation ; Protein Folding ; Protein Structure, Quaternary ; Thioctic Acid/*analogs & derivatives/metabolism ; Thioredoxins/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-07-05
    Description: Mediator is a key regulator of eukaryotic transcription, connecting activators and repressors bound to regulatory DNA elements with RNA polymerase II (Pol II). In the yeast Saccharomyces cerevisiae, Mediator comprises 25 subunits with a total mass of more than one megadalton (refs 5, 6) and is organized into three modules, called head, middle/arm and tail. Our understanding of Mediator assembly and its role in regulating transcription has been impeded so far by limited structural information. Here we report the crystal structure of the essential Mediator head module (seven subunits, with a mass of 223 kilodaltons) at a resolution of 4.3 angstroms. Our structure reveals three distinct domains, with the integrity of the complex centred on a bundle of ten helices from five different head subunits. An intricate pattern of interactions within this helical bundle ensures the stable assembly of the head subunits and provides the binding sites for general transcription factors and Pol II. Our structural and functional data suggest that the head module juxtaposes transcription factor IIH and the carboxy-terminal domain of the largest subunit of Pol II, thereby facilitating phosphorylation of the carboxy-terminal domain of Pol II. Our results reveal architectural principles underlying the role of Mediator in the regulation of gene expression.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4109712/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4109712/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Imasaki, Tsuyoshi -- Calero, Guillermo -- Cai, Gang -- Tsai, Kuang-Lei -- Yamada, Kentaro -- Cardelli, Francesco -- Erdjument-Bromage, Hediye -- Tempst, Paul -- Berger, Imre -- Kornberg, Guy Lorch -- Asturias, Francisco J -- Kornberg, Roger D -- Takagi, Yuichiro -- GM36659/GM/NIGMS NIH HHS/ -- P30 CA008748/CA/NCI NIH HHS/ -- P30 CA08748/CA/NCI NIH HHS/ -- R01 GM036659/GM/NIGMS NIH HHS/ -- R01 GM067167/GM/NIGMS NIH HHS/ -- R01GM67167/GM/NIGMS NIH HHS/ -- Y01 CO1020-11/CO/NCI NIH HHS/ -- Y01 GM1104-11/GM/NIGMS NIH HHS/ -- Y1-CO-1020/CO/NCI NIH HHS/ -- Y1-GM-1104/GM/NIGMS NIH HHS/ -- England -- Nature. 2011 Jul 3;475(7355):240-3. doi: 10.1038/nature10162.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, Indiana 46202, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21725323" target="_blank"〉PubMed〈/a〉
    Keywords: Binding Sites ; Crystallography, X-Ray ; Mediator Complex/*chemistry/*metabolism ; Models, Molecular ; Phosphorylation ; Protein Structure, Tertiary ; Protein Subunits/chemistry/metabolism ; RNA Polymerase II/chemistry/metabolism ; Saccharomyces cerevisiae/*chemistry/enzymology ; Structure-Activity Relationship ; Transcription Factor TFIIH/chemistry/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...