ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Stamford, Conn. [u.a.] : Wiley-Blackwell
    Polymer Engineering and Science 23 (1983), S. 869-876 
    ISSN: 0032-3888
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Increasing the nominal injection pressure up to 500 MP a improves the mechanical properties (modulus and strength) of injection-molded high-molecular-weight high-density polyethylene substantially. By a proper combination of barrel and mold temperature, the modulus of the molded parts (test bars) may be increased at least eight times compared to parts molded at 100 MPa. This improvement is partly due to the formation of high-strength crystalline modifications of the polyethylene induced by flow and pressure. The extent to which these structure modifications occur in the samples molded at various conditions has been determined by thermal analysis (DTA). When increasing the thickness of the samples, a sharp reduction of the modulus and strength was observed, even though the concentration of the crystalline high-strength phase was higher. An explanation of this effect in terms of the relaxation of the tie-molecules connecting the crystallites is suggested.
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Stamford, Conn. [u.a.] : Wiley-Blackwell
    Polymer Engineering and Science 19 (1979), S. 145-150 
    ISSN: 0032-3888
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: It is well established that both molecular weight (M) and its distribution (MD) affect many polymer properties such as mechanical behavior. Thus studies have shown that fatigue life is enhanced by increases in M. Research here has shown that with notched specimens fatigue crack propagation (FCP) rates are dramatically decreased by increasing M, even when the M is high enough that the static fraeture energy has essentially reached its asymptotic limit. In this study, specimens of poly(methyl methacrylate) containing either high- or low-M tails were prepared and characterized. The earlier finding that FCP rates are inversely related to average M was confirmed, but specific effects of M distribution were observed. At constant Mn, a low-M tail had little effect on FCP resistance, while a high-M tail improved FCP resistance of polymers whose average M was too low for effective entanglements. Thus with high-M tails, it was possible to test specimens whose average M's were too low to permit machining. It is proposed that the effects noted are due to relative stabilization or destabilization of crazes ahead of the crack.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Stamford, Conn. [u.a.] : Wiley-Blackwell
    Polymer Engineering and Science 19 (1979), S. 869-877 
    ISSN: 0032-3888
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Electron microscopy and dynamic mechanical spectroscopy (DMS) techniques were used to study the morphology and glass transition behavior of simultaneous interpenetrating networks (SIN's), based on three different castor oil derived elastomers, and polystyrene (PS) plastic erosslinked with 1 percent divinyl benzene. The castor oil elastomers consisted of either the sebacic acid polyester, 2,4-tolylene diisocyanate polyurethane, or the mixed poly(ester-urethane). Emphasis was placed on two compositions having 10 and 40 percent elastomer contents by weight of each type, the remainder being PS. In all cases, a two-phase morphology emerged. With the 10 percent elastomer composition, the use of vigorous stirring during the early stages of reaction resulted in materials having the crosslinked polystyrene as the continuous phase and elastomer domains (ranging from 100 to 8000 nm in size) as the discontinuous phase. The elastomer domains contained a polystyrene cellular structure, with the polystyrene cell sizes ranging from 50 to 300 nm size. Several examples showed morphologies resembling high impact polystyrene. Materials having a 40 percent elastomer content always showed a continuous phase of castor oil elastomer, with the PS displaying a bimodal size cellular structure. Domain sizes ranged from 10 to 860 nm. The DMS studies showed two well-defined glass transitions near their respective homopolymer glass transitions, but shifted inwards to greater or lesser extents indicating some molecular mixing between the two polymers. The glass transition of the pure elastomer phase occurred at -66°C for the castor oil polyester elastomer, -4°C for the castor oil polyurethane elastomer and -50°C for the castor oil poly(ester-urethane) elastomer. Phase separation in these materials is postulated to occur by two mechanisms: (1) multiple precipitation of polystyrene chains at progressive levels of polymerization and (2) microsyneresis processes. The thermodynamics of mixing and phase separation in polymerizing SIN's is examined in some detail.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Stamford, Conn. [u.a.] : Wiley-Blackwell
    Polymer Engineering and Science 22 (1982), S. 982-987 
    ISSN: 0032-3888
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: The fatigue crack propagation (FCP) behavior (at 10 Hz) of several commercial short-glass-fiber and mineral-reinforced nylon composites has been investigated. The FCP rates can be described in terms of the well-known Paris relationship. Significant improvement in FCP performance was found for the glass-fiber-reinforced materials in comparison to that of the pure matrix materials (nylon 66 and nylon 612). Also, the FCP resistance was found to increase with increasing fiber content and interfacial adhesion for nylon 66. Despite the fact that specimens were cut from injection-molded plaques, no or only slight effects of orientation were observed by testing specimens with cracks growing parallel and perpendicularly, respectively, to the major flow direction. Electron microscopy studies of fracture surfaces revealed a complex pattern of fiber orientation, varying over the plaque thickness and consisting of layers with fibers oriented mainly parallel, perpendicularly, or randomly to the major flow direction; nevertheless, the specimens behaved quasi-isotropically. Significant differences in fracture mechanism were observed, depending on the matrix, the interfacial bonding, and the crack speed. In contrast to the fiber-rein forced nylons, the mineral-reinforced material exhibited poorer FCP resistance than neat nylon 66, even though the former is superior in tensile and impact behavior.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Stamford, Conn. [u.a.] : Wiley-Blackwell
    Polymer Engineering and Science 15 (1975), S. 252-260 
    ISSN: 0032-3888
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: One is faced with an interesting challenge when trying to explain the effect of test frequency on polymer fatigue performance. While hysteretic heating arguments appear sufficient to explain a diminution of fatigue resistance with increasing cyclic frequency in unnotched test samples, the enhancement of fatigue resistance in many polymers with increasing cyclic frequency in notched samples is still not clearly understood. In large measure, this is due to contradictory trends in fre-quency-sensitive material properties which affect the fatigue process. In this paper, a number of proposed fatigue models dealing with the time and strain rate dependence of elastic modulus, yield strength, creep and localized crack tip heating are examined and confronted with available data from the literature. Additional fatigue crack propagation data for poly(methyl methacrylate), poly (vinyl chloride), polystyrene, poly-carbonate, nylon 66, poly(vinylidene fluoride) and poly(2,6-dimethylphenylene oxide) were obtained and are reported herein. These data were obtained over a maximum frequency range of 0.1 to 100 Hz and, for selected polymers, with various waveforms. Frequency sensitivity is shown to be greatest in those polymers that show a high tendency for crazing. Relative fatigue behavior is found to reflect a competition between strain rate and creep effects. Where creep effects dominate, the total crack growth rate may be viewed as consisting of the summation of pure fatigue and creep components, respectively. Finally, the β transition appears to have a role, with frequency sensitivity being at a maximum for polymers where the β transition at room temperature occurs in the range of the experimental test frequency.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Stamford, Conn. [u.a.] : Wiley-Blackwell
    Polymer Engineering and Science 17 (1977), S. 194-203 
    ISSN: 0032-3888
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: In spite of the importance of fatigue behavior in engineering plastics, relatively few fundamental studies have been made of the effects of polymer structure, molecular weight, composition, and morphology on fatigue crack propagation (FCP). As, part of a broad program for the study of such effects, the role of molecular weight and internal plasticization has been studied in poly(methyl methacrylate) (PMMA) which had been specially prepared and characterized with respect to molecular weight, dynamic mechanical behavior, and, in some cases, stress-strain response. As expected, values of fracture toughness, Kc, varied considerably as the molecular weight was rai ed, from 0.7 MPa, √m at Mv = 1.0 × 105 to 1.1 at Mv, = 4.8 × 106. However, a specific effect of fatigue was noted: over the same range of Kc, values of FCP rate decreased by two orders of magnitude as molecular weight was; increased. It is proposed that this high sensitivity is due to differences in the degree of chain disentanglement effected by the cyclic loading, with consequent differences in the strength of the craze preceding the crack. With PMMA plasticized internally with a low level (10 percent) of n-butyl acrylate (nBA), the FCP rate and Kc, were similar to those of controls, with very high rates shown. At higher nBA levels (up to 30 percent), the sensitivity of FCP rate to stress intensity factor range decreased considerably, Kc, increased by 30 percent and the pre-exponential constant in the growth rate law increased. Plasticization weakens the polymer but at high degrees leads to enough hysteretic heating to induce local creep and crack blunting.
    Additional Material: 12 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Stamford, Conn. [u.a.] : Wiley-Blackwell
    Polymer Engineering and Science 17 (1977), S. 294-299 
    ISSN: 0032-3888
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Polystyrene Latexes were synthesized using sodium ricinoleate (the ehief saponification product of castor oil) as the surfactant. Later sulfur, more sodium ricinoleate, and sometimes castor oil were added, and the emulsion heated to a temperature where the sulfur vulcanized the castor oil products, making a semi-interpenetrating polymer network. Stress-strain studies showed the presence of a well developed yield point and high elongation for some samples, indicating considerable toughening for slow rates of strain. Electron microscopy revealed a complex two-phased morphology. Usually polystyrene was the continuous phase. The rubbery phase domain size depended upon the amount of castor oil products added lzod impact strengths showed only modest improvements; probably because of the high glass transition temperature of the castor oil vulcanizate.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Stamford, Conn. [u.a.] : Wiley-Blackwell
    Polymer Engineering and Science 17 (1977), S. 325-334 
    ISSN: 0032-3888
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Mortar specimens were impregnated with methyl methacrylate, n-butyl acrylate, styrene, and crosslinking agents in various combinations. After polymerization of the monomers in situ, studies of mechanical properties such as Young's modulus and compressive strength were made. In one experiment, various ccpolymers of methyl methacrylate and n-butyl acrylate were prepared and tested as a function of temperature. Excellent reinforcement was obtained with any combination of monomers as long as the resulting polymer was at a temperature below its glass transition temperature. This suggests that the modulus of the reinforcing polymer is crucial, glassy behavior being required. The addition of crosslinking agents such as TMPTMA increased the high temperature strength, however.
    Additional Material: 12 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Stamford, Conn. [u.a.] : Wiley-Blackwell
    Polymer Engineering and Science 17 (1977), S. 251-256 
    ISSN: 0032-3888
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: The physical and mechanical properties of interpenetrating polymer networks (IPN's) based on castor oil-urethane and polystyrene are detailed in this paper. Dynamic mechanical spectroscopy showed extensive but incomplete molecular mixing of the two polymers. The glass transition temperatures of the IPN's gradually merged from two distinct transitions into one broad transition at an intermediate temperature as the crosslink level of the castor oil component was increased. At low polystyrene contents, the IPN's yielded stress-strain behavior similar to reinforced elastomers, but at high polystyrene contents, they exhibited increased elongation. For example, the latter materials showed well developed yield points. Stress whitening and necking were also observed, suggesting a possible failure mechanism by crazing. Cold drawing was exhibited by the materials under tension. The tensile strength and Young's modules were enhanced as the polymer II (polystyrene) content was increased at constant crosslink level of polymer I (castor oil-urethane). A similar effect was also observed by maintaining the polystyrene content constant but increasing the crosslink level of polymer I. The impact strength of the materials ranged from 32.1 to 53.4 N · m/m, which is approximately two to three times that of homopolymer polystyrene. The best materials were those with compositions in the range of 40-46 percent castor oil-urethane. The materials prepared by using tolylene diisocyanate as crosslinker for the castor oil phase had the best impact properties, especially at an NCO/OH ratio of 0.95.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Stamford, Conn. [u.a.] : Wiley-Blackwell
    Polymer Engineering and Science 18 (1978), S. 200-203 
    ISSN: 0032-3888
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Simultaneous interpenetrating networks (SIN's) have been synthesized by simultaneous polymerization of a rubbery polymer based on castor oil and a second plastic forming monomer plus initiator and crosslinking agent. According to the overall composition and synthetic details, SIN's of elastomeric, leathery, or plastic behavior have been obtained. Polymers employed were the crosslinked polyester from castor oil and sebacyl chloride (a castor oil derivative) and polystyrene crosslinked with 1 percent divinyl benzene, simultaneously polymerized. Electron microscopy revealed a complex two phase morphology strongly depending on the relative gelation times of the two polymers, the polymer gelling first becoming the more continuous phase. Stress-strain curves show a SIN plastic with a well developed yield point, as well us highly toughened elastomers. Both the plastic and the elastomeric SIN's are tougher than the corresponding homopolymers. Modulus-temperature curves show a glass transition temperature around -60°C for the elastomer component, and +100°C for the polystyrene in the SIN's.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...