ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Betula nana  (1)
  • Key words: decomposition; fertilization; Hawaii; lignin; Metrosideros polymorpha; nitrogen.  (1)
Collection
Keywords
Publisher
Years
  • 1
    ISSN: 1435-0629
    Keywords: Key words: decomposition; fertilization; Hawaii; lignin; Metrosideros polymorpha; nitrogen.
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Previous work in a young Hawaiian forest has shown that nitrogen (N) limits aboveground net primary production (ANPP) more strongly than it does decomposition, despite low soil N availability. In this study, I determined whether (a) poor litter C quality (that is, high litter lignin) poses an overriding constraint on decomposition, preventing decomposers from responding to added N, or (b) high N levels inhibit lignin degradation, lessening the effects of added N on decomposition overall. I obtained leaf litter from one species, Metrosideros polymorpha, which dominates a range of sites in the Hawaiian Islands and whose litter lignin concentration declines with decreasing precipitation. Litter from three dry sites had lignin concentrations of 12% or less, whereas litter from two wet sites, including the study site, had lignin concentrations of more than 18%. This litter was deployed 2.5 years in a common site in control plots (receiving no added nutrients) and in N-fertilized plots. Nitrogen fertilization stimulated decomposition of the low-lignin litter types more than that of the high-lignin litter types. However, in contrast to results from temperate forests, N did not inhibit lignin decomposition. Rather, lignin decay increased with added N, suggesting that the small effect of N on decomposition at this site results from limitation of decomposition by poor C quality rather than from N inhibition of lignin decay. Even though ANPP is limited by N, decomposers are strongly limited by C quality. My results suggest that anthropogenic N deposition may increase leaf litter decomposition more in ecosystems characterized by low-lignin litter than in those characterized by high-lignin litter.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-01-05
    Description: Author Posting. © The Authors, 2005. This is the author's version of the work. It is posted here by permission of Blackwell Publishing for personal use, not for redistribution. The definitive version was published in Journal of Ecology 93 (2005): 770-782, doi:10.1111/j.1365-2745.2005.01006.x.
    Description: In the northern foothills of the Brooks Range, Alaska, moist non-acidic tundra dominates more recently deglaciated upland landscapes, whereas moist acidic tundra dominates older upland landscapes. In previous studies, experimental fertilization of moist acidic tussock tundra greatly increased the abundance and productivity of the deciduous dwarf shrub Betula nana. However, this species is largely absent from moist non-acidic tundra. These two common upland tundra community types exhibited markedly different responses to fertilization with nitrogen and phosphorus. In moist acidic tundra, cover of deciduous shrubs (primarily B. nana) increased after only 2 years, and by 4 years vascular biomass and above-ground net primary productivity (ANPP) had increased significantly, almost entirely because of Betula. In moist non-acidic tundra, both biomass and ANPP were again significantly greater, but no single species dominated the response to fertilization. Instead, the effect was due to a combination of several small, sometimes statistically non-significant responses by forbs, graminoids and prostrate deciduous shrubs. The different growth form and species' responses suggest that fertilization will cause carbon cycling through plant biomass to diverge in these two tundra ecosystems. Already, production of new stems by apical growth has increased relative to leaf production in acidic tundra, whereas the opposite has occurred in non-acidic tundra. Secondary stem growth has also increased as a component of primary production in acidic tundra, but is unchanged in non-acidic tundra. Thus, fertilization will probably increase carbon sequestration in woody biomass of B. nana in acidic tundra, while increasing carbon turnover (but not storage) of non-woody species in non-acidic tundra. These results indicate that nutrient enrichment can have very different consequences for plant communities that occur on different geological substrates, because of differences in composition, even though they share the same regional species pool. Although the specific edaphic factors that maintain compositional differences in this case are unknown, variation in soil pH and related variability in soil nutrient availability may well play a role.
    Description: This research was supported by a collaborative grant from the National Science Foundation (OPP-9902695 to S.E.H. and OPP-9902721 to L.G.) and by the Arctic LTER (DEB-9810222).
    Keywords: Alaska ; Arctic ; Betula nana ; Fertilization ; Moist acidic tundra ; Moist non-acidic tundra ; Net primary production ; Nitrogen ; pH ; Phosphorus
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: 77312 bytes
    Format: 993792 bytes
    Format: application/msword
    Format: application/msword
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...