ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Amino Acid Substitution  (2)
  • HIV Envelope Protein gp120/*chemistry/immunology/metabolism  (2)
  • 1
    Publication Date: 1998-06-25
    Description: The entry of primate immunodeficiency viruses into target cells depends on a sequential interaction of the gp120 envelope glycoprotein with the cellular receptors, CD4 and members of the chemokine receptor family. The gp120 third variable (V3) loop has been implicated in chemokine receptor binding, but the use of the CCR5 chemokine receptor by diverse primate immunodeficiency viruses suggests the involvement of an additional, conserved gp120 element. Through the use of gp120 mutants, a highly conserved gp120 structure was shown to be critical for CCR5 binding. This structure is located adjacent to the V3 loop and contains neutralization epitopes induced by CD4 binding. This conserved element may be a useful target for pharmacologic or prophylactic intervention in human immunodeficiency virus (HIV) infections.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rizzuto, C D -- Wyatt, R -- Hernandez-Ramos, N -- Sun, Y -- Kwong, P D -- Hendrickson, W A -- Sodroski, J -- AI 40895/AI/NIAID NIH HHS/ -- AI 41851/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 1998 Jun 19;280(5371):1949-53.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Department of Pathology, Harvard Medical School, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9632396" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Substitution ; Animals ; Antigens, CD4/metabolism ; Binding Sites ; Crystallization ; HIV Antibodies/immunology ; HIV Envelope Protein gp120/*chemistry/genetics/immunology/*metabolism ; HIV-1/*chemistry/immunology ; Humans ; Models, Molecular ; Peptide Fragments/chemistry ; Protein Conformation ; Protein Structure, Secondary ; Receptors, CCR5/*metabolism ; Recombinant Proteins/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2007-09-29
    Description: The CCR5 co-receptor binds to the HIV-1 gp120 envelope glycoprotein and facilitates HIV-1 entry into cells. Its N terminus is tyrosine-sulfated, as are many antibodies that react with the co-receptor binding site on gp120. We applied nuclear magnetic resonance and crystallographic techniques to analyze the structure of the CCR5 N terminus and that of the tyrosine-sulfated antibody 412d in complex with gp120 and CD4. The conformations of tyrosine-sulfated regions of CCR5 (alpha-helix) and 412d (extended loop) are surprisingly different. Nonetheless, a critical sulfotyrosine on CCR5 and on 412d induces similar structural rearrangements in gp120. These results now provide a framework for understanding HIV-1 interactions with the CCR5 N terminus during viral entry and define a conserved site on gp120, whose recognition of sulfotyrosine engenders posttranslational mimicry by the immune system.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2278242/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2278242/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Huang, Chih-Chin -- Lam, Son N -- Acharya, Priyamvada -- Tang, Min -- Xiang, Shi-Hua -- Hussan, Syed Shahzad-Ul -- Stanfield, Robyn L -- Robinson, James -- Sodroski, Joseph -- Wilson, Ian A -- Wyatt, Richard -- Bewley, Carole A -- Kwong, Peter D -- P30 AI060354/AI/NIAID NIH HHS/ -- U19 AI067854/AI/NIAID NIH HHS/ -- U19 AI067854-03/AI/NIAID NIH HHS/ -- Z99 AI999999/Intramural NIH HHS/ -- New York, N.Y. -- Science. 2007 Sep 28;317(5846):1930-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17901336" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Antigens, CD4/*chemistry/immunology ; Crystallography, X-Ray ; HIV Antibodies/*chemistry/immunology ; HIV Envelope Protein gp120/*chemistry/immunology/metabolism ; HIV-1/metabolism ; Humans ; Models, Molecular ; Molecular Mimicry ; Molecular Sequence Data ; Nuclear Magnetic Resonance, Biomolecular ; Peptide Fragments/chemistry/metabolism ; Receptors, CCR5/*chemistry/metabolism ; Sulfates/metabolism ; Tyrosine/metabolism ; Virus Internalization
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2005-11-15
    Description: The third variable region (V3) of the HIV-1 gp120 envelope glycoprotein is immunodominant and contains features essential for coreceptor binding. We determined the structure of V3 in the context of an HIV-1 gp120 core complexed to the CD4 receptor and to the X5 antibody at 3.5 angstrom resolution. Binding of gp120 to cell-surface CD4 would position V3 so that its coreceptor-binding tip protrudes 30 angstroms from the core toward the target cell membrane. The extended nature and antibody accessibility of V3 explain its immunodominance. Together, the results provide a structural rationale for the role of V3 in HIV entry and neutralization.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2408531/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2408531/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Huang, Chih-chin -- Tang, Min -- Zhang, Mei-Yun -- Majeed, Shahzad -- Montabana, Elizabeth -- Stanfield, Robyn L -- Dimitrov, Dimiter S -- Korber, Bette -- Sodroski, Joseph -- Wilson, Ian A -- Wyatt, Richard -- Kwong, Peter D -- AI24755/AI/NIAID NIH HHS/ -- AI31783/AI/NIAID NIH HHS/ -- AI39429/AI/NIAID NIH HHS/ -- AI40895/AI/NIAID NIH HHS/ -- GM46192/GM/NIGMS NIH HHS/ -- Z99 AI999999/Intramural NIH HHS/ -- New York, N.Y. -- Science. 2005 Nov 11;310(5750):1025-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16284180" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Antigens, CD4/chemistry/*metabolism ; Binding Sites ; Crystallization ; Crystallography, X-Ray ; HIV Antibodies/immunology ; HIV Envelope Protein gp120/*chemistry/immunology/metabolism ; HIV-1/*chemistry/immunology/metabolism ; Humans ; Hydrogen Bonding ; Immunodominant Epitopes ; Models, Molecular ; Molecular Sequence Data ; Peptide Fragments/*chemistry/immunology/metabolism ; Protein Binding ; Protein Conformation ; Protein Structure, Tertiary ; Receptors, CCR5/chemistry/metabolism ; Receptors, CXCR4/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2012-11-16
    Description: Characterization of human monoclonal antibodies is providing considerable insight into mechanisms of broad HIV-1 neutralization. Here we report an HIV-1 gp41 membrane-proximal external region (MPER)-specific antibody, named 10E8, which neutralizes approximately 98% of tested viruses. An analysis of sera from 78 healthy HIV-1-infected donors demonstrated that 27% contained MPER-specific antibodies and 8% contained 10E8-like specificities. In contrast to other neutralizing MPER antibodies, 10E8 did not bind phospholipids, was not autoreactive, and bound cell-surface envelope. The structure of 10E8 in complex with the complete MPER revealed a site of vulnerability comprising a narrow stretch of highly conserved gp41-hydrophobic residues and a critical arginine or lysine just before the transmembrane region. Analysis of resistant HIV-1 variants confirmed the importance of these residues for neutralization. The highly conserved MPER is a target of potent, non-self-reactive neutralizing antibodies, suggesting that HIV-1 vaccines should aim to induce antibodies to this region of HIV-1 envelope glycoprotein.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Huang, Jinghe -- Ofek, Gilad -- Laub, Leo -- Louder, Mark K -- Doria-Rose, Nicole A -- Longo, Nancy S -- Imamichi, Hiromi -- Bailer, Robert T -- Chakrabarti, Bimal -- Sharma, Shailendra K -- Alam, S Munir -- Wang, Tao -- Yang, Yongping -- Zhang, Baoshan -- Migueles, Stephen A -- Wyatt, Richard -- Haynes, Barton F -- Kwong, Peter D -- Mascola, John R -- Connors, Mark -- HSN261200800001E/PHS HHS/ -- Intramural NIH HHS/ -- England -- Nature. 2012 Nov 15;491(7424):406-12. doi: 10.1038/nature11544. Epub 2012 Sep 18.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉HIV-Specific Immunity Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23151583" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Substitution ; Antibodies, Neutralizing/chemistry/*metabolism ; Antibody Specificity ; Cells, Cultured ; HEK293 Cells ; HIV Antibodies/chemistry/isolation & purification/*metabolism ; HIV Envelope Protein gp41/chemistry/*immunology ; HIV-1/*physiology ; Humans ; Models, Molecular ; Molecular Sequence Data ; Protein Binding ; Protein Structure, Tertiary
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...