ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2009-09-04
    Description: Differential DNA methylation of the paternal and maternal alleles regulates the parental origin-specific expression of imprinted genes in mammals. The methylation imprints are established in male and female germ cells during gametogenesis, and the de novo DNA methyltransferase DNMT3A and its cofactor DNMT3L are required in this process. However, the mechanisms underlying locus- and parental-specific targeting of the de novo DNA methylation machinery in germline imprinting are poorly understood. Here we show that amine oxidase (flavin-containing) domain 1 (AOF1), a protein related to the lysine demethylase KDM1 (also known as LSD1), functions as a histone H3 lysine 4 (H3K4) demethylase and is required for de novo DNA methylation of some imprinted genes in oocytes. AOF1, now renamed lysine demethylase 1B (KDM1B) following a new nomenclature, is highly expressed in growing oocytes where genomic imprints are established. Targeted disruption of the gene encoding KDM1B had no effect on mouse development and oogenesis. However, oocytes from KDM1B-deficient females showed a substantial increase in H3K4 methylation and failed to set up the DNA methylation marks at four out of seven imprinted genes examined. Embryos derived from these oocytes showed biallelic expression or biallelic suppression of the affected genes and died before mid-gestation. Our results suggest that demethylation of H3K4 is critical for establishing the DNA methylation imprints during oogenesis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ciccone, David N -- Su, Hui -- Hevi, Sarah -- Gay, Frederique -- Lei, Hong -- Bajko, Jeffrey -- Xu, Guoliang -- Li, En -- Chen, Taiping -- England -- Nature. 2009 Sep 17;461(7262):415-8. doi: 10.1038/nature08315. Epub 2009 Sep 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Epigenetics Program, Novartis Institutes for Biomedical Research, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19727073" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Animals ; *DNA Methylation ; Embryo Loss/genetics ; Embryo, Mammalian/metabolism ; Female ; Gene Expression Regulation, Developmental ; Genes, Developmental/genetics ; *Genomic Imprinting ; Histones/*metabolism ; Male ; Mice ; *Mothers ; NIH 3T3 Cells ; Oocytes/metabolism ; Oxidoreductases, N-Demethylating/deficiency/genetics/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2009-07-28
    Description: The breadth of genomic diversity found among organisms in nature allows populations to adapt to diverse environments. However, genomic diversity is difficult to generate in the laboratory and new phenotypes do not easily arise on practical timescales. Although in vitro and directed evolution methods have created genetic variants with usefully altered phenotypes, these methods are limited to laborious and serial manipulation of single genes and are not used for parallel and continuous directed evolution of gene networks or genomes. Here, we describe multiplex automated genome engineering (MAGE) for large-scale programming and evolution of cells. MAGE simultaneously targets many locations on the chromosome for modification in a single cell or across a population of cells, thus producing combinatorial genomic diversity. Because the process is cyclical and scalable, we constructed prototype devices that automate the MAGE technology to facilitate rapid and continuous generation of a diverse set of genetic changes (mismatches, insertions, deletions). We applied MAGE to optimize the 1-deoxy-D-xylulose-5-phosphate (DXP) biosynthesis pathway in Escherichia coli to overproduce the industrially important isoprenoid lycopene. Twenty-four genetic components in the DXP pathway were modified simultaneously using a complex pool of synthetic DNA, creating over 4.3 billion combinatorial genomic variants per day. We isolated variants with more than fivefold increase in lycopene production within 3 days, a significant improvement over existing metabolic engineering techniques. Our multiplex approach embraces engineering in the context of evolution by expediting the design and evolution of organisms with new and improved properties.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4590770/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4590770/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wang, Harris H -- Isaacs, Farren J -- Carr, Peter A -- Sun, Zachary Z -- Xu, George -- Forest, Craig R -- Church, George M -- DP5 OD009172/OD/NIH HHS/ -- England -- Nature. 2009 Aug 13;460(7257):894-8. doi: 10.1038/nature08187. Epub 2009 Jul 26.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA. hhwang@genetics.med.harvard.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19633652" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Biotechnology/instrumentation/*methods ; Carotenoids/biosynthesis ; Chromosomes, Bacterial/genetics ; DNA/biosynthesis/genetics ; Directed Molecular Evolution/instrumentation/*methods ; Escherichia coli/cytology/*genetics/*metabolism ; Genetic Variation/genetics ; Genome, Bacterial/*genetics ; Pentosephosphates/biosynthesis
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...