ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-515X
    Keywords: DOC ; DON ; DOP ; Hawaii ; soil ; soluble organic matter
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract We measured DOM fluxes from the O horizon of Hawaiiansoils that varied in nutrient availability and mineralcontent to examine what regulates the flux ofdissolved organic carbon (DOC), nitrogen (DON) andphosphorus (DOP) from the surface layer of tropicalsoils. We examined DOM fluxes in a laboratory study from N, P and N+Pfertilized and unfertilized sites on soils that rangedin age from 300 to 4 million years old. The fluxesof DOC and DON were generally related to the % Cand % N content of the soils across the sites. Ingeneral, CO2 and DOC fluxes were not correlatedsuggesting that physical desorption, dissolution andsorption reactions primarily control DOM release fromthese surface horizons. The one exception to thispattern was at the oldest site where there was asignificant relationship between DOC and CO2flux. The oldest site also contained the lowestmineral and allophane content of the three sites andthe DOC-respiration correlation indicates arelationship between microbial activity and DOC fluxat this site. N Fertilization increased DON fluxes by50% and decreased DOC:DON ratios in the youngest,most N poor site. In the older, more N rich sites, Nfertilization neither increased DON fluxes nordecreased DOM C:N ratios. Similarly, short termchanges in N availability in laboratory-based soil Nand P fertilization experiments did not affect the DOMC:N ratios of leachate. DOM C:N ratios were similar tosoil organic matter C:N ratios, and changes in DOM C:Nratios with fertilization appeared to have beenmediated through long term effects on SOM C:N ratiosrather than through changes in microbial demand for Cand N. There was no relationship between DON andinorganic N flux during these incubations suggestingthat the organic and inorganic components of N fluxfrom soils are regulated by different factors and thatDON fluxes are not coupled to immediate microbialdemand for N. In contrast to the behavior of DON, thenet flux of dissolved organic phosphorus (DOP) and DOMC:P ratios responded to both long-term P fertilizationand natural variation in reactive P availability. There was lower DOP flux and higher DOM C:P ratiosfrom soils characterized by low P availability andhigh DOP flux and narrow DOM C:P ratios in sites withhigh P availability. DOP fluxes were also closelycorrelated with dissolved inorganic P fluxes. PFertilization increased DOP fluxes by 73% in theyoungest site, 31% in the P rich intermediate agesite and 444% in the old, P poor site indicating thatDOP fluxes closely track P availability in soils.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-01-05
    Description: Author Posting. © The Authors, 2005. This is the author's version of the work. It is posted here by permission of Blackwell Publishing for personal use, not for redistribution. The definitive version was published in Journal of Ecology 93 (2005): 770-782, doi:10.1111/j.1365-2745.2005.01006.x.
    Description: In the northern foothills of the Brooks Range, Alaska, moist non-acidic tundra dominates more recently deglaciated upland landscapes, whereas moist acidic tundra dominates older upland landscapes. In previous studies, experimental fertilization of moist acidic tussock tundra greatly increased the abundance and productivity of the deciduous dwarf shrub Betula nana. However, this species is largely absent from moist non-acidic tundra. These two common upland tundra community types exhibited markedly different responses to fertilization with nitrogen and phosphorus. In moist acidic tundra, cover of deciduous shrubs (primarily B. nana) increased after only 2 years, and by 4 years vascular biomass and above-ground net primary productivity (ANPP) had increased significantly, almost entirely because of Betula. In moist non-acidic tundra, both biomass and ANPP were again significantly greater, but no single species dominated the response to fertilization. Instead, the effect was due to a combination of several small, sometimes statistically non-significant responses by forbs, graminoids and prostrate deciduous shrubs. The different growth form and species' responses suggest that fertilization will cause carbon cycling through plant biomass to diverge in these two tundra ecosystems. Already, production of new stems by apical growth has increased relative to leaf production in acidic tundra, whereas the opposite has occurred in non-acidic tundra. Secondary stem growth has also increased as a component of primary production in acidic tundra, but is unchanged in non-acidic tundra. Thus, fertilization will probably increase carbon sequestration in woody biomass of B. nana in acidic tundra, while increasing carbon turnover (but not storage) of non-woody species in non-acidic tundra. These results indicate that nutrient enrichment can have very different consequences for plant communities that occur on different geological substrates, because of differences in composition, even though they share the same regional species pool. Although the specific edaphic factors that maintain compositional differences in this case are unknown, variation in soil pH and related variability in soil nutrient availability may well play a role.
    Description: This research was supported by a collaborative grant from the National Science Foundation (OPP-9902695 to S.E.H. and OPP-9902721 to L.G.) and by the Arctic LTER (DEB-9810222).
    Keywords: Alaska ; Arctic ; Betula nana ; Fertilization ; Moist acidic tundra ; Moist non-acidic tundra ; Net primary production ; Nitrogen ; pH ; Phosphorus
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: 77312 bytes
    Format: 993792 bytes
    Format: application/msword
    Format: application/msword
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...