ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2002-01-05
    Description: The recently released human genome sequences provide us with reference data to conduct comparative genomic research on primates, which will be important to understand what genetic information makes us human. Here we present a first-generation human-chimpanzee comparative genome map and its initial analysis. The map was constructed through paired alignment of 77,461 chimpanzee bacterial artificial chromosome end sequences with publicly available human genome sequences. We detected candidate positions, including two clusters on human chromosome 21 that suggest large, nonrandom regions of difference between the two genomes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fujiyama, Asao -- Watanabe, Hidemi -- Toyoda, Atsushi -- Taylor, Todd D -- Itoh, Takehiko -- Tsai, Shih-Feng -- Park, Hong-Seog -- Yaspo, Marie-Laure -- Lehrach, Hans -- Chen, Zhu -- Fu, Gang -- Saitou, Naruya -- Osoegawa, Kazutoyo -- de Jong, Pieter J -- Suto, Yumiko -- Hattori, Masahira -- Sakaki, Yoshiyuki -- New York, N.Y. -- Science. 2002 Jan 4;295(5552):131-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉RIKEN Genomic Sciences Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan. afujiyam@gsc.riken.go.jp〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11778049" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Chromosomes, Artificial, Bacterial ; Chromosomes, Human, Pair 21/genetics ; Cloning, Molecular ; Contig Mapping ; Female ; Gene Library ; *Genome ; *Genome, Human ; Humans ; Male ; Pan troglodytes/*genetics ; *Physical Chromosome Mapping ; Sequence Alignment ; Sequence Analysis, DNA ; Sequence Tagged Sites ; X Chromosome/genetics ; Y Chromosome/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2001-12-26
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Seo, H C -- Kube, M -- Edvardsen, R B -- Jensen, M F -- Beck, A -- Spriet, E -- Gorsky, G -- Thompson, E M -- Lehrach, H -- Reinhardt, R -- Chourrout, D -- New York, N.Y. -- Science. 2001 Dec 21;294(5551):2506.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Sars [corrected] Centre for Marine Molecular Biology, Thormo- hlensgt. 55, 5020 Bergen, Norway.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11752568" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Chromosomes, Artificial, Bacterial ; Ciona intestinalis/genetics ; Cloning, Molecular ; DNA, Complementary ; DNA, Intergenic ; Expressed Sequence Tags ; Genes ; *Genome ; Introns ; Male ; Repetitive Sequences, Nucleic Acid ; Sequence Analysis, DNA ; Spermatozoa/chemistry ; Urochordata/anatomy & histology/*genetics/growth & development
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2008-07-05
    Description: The functional complexity of the human transcriptome is not yet fully elucidated. We report a high-throughput sequence of the human transcriptome from a human embryonic kidney and a B cell line. We used shotgun sequencing of transcripts to generate randomly distributed reads. Of these, 50% mapped to unique genomic locations, of which 80% corresponded to known exons. We found that 66% of the polyadenylated transcriptome mapped to known genes and 34% to nonannotated genomic regions. On the basis of known transcripts, RNA-Seq can detect 25% more genes than can microarrays. A global survey of messenger RNA splicing events identified 94,241 splice junctions (4096 of which were previously unidentified) and showed that exon skipping is the most prevalent form of alternative splicing.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sultan, Marc -- Schulz, Marcel H -- Richard, Hugues -- Magen, Alon -- Klingenhoff, Andreas -- Scherf, Matthias -- Seifert, Martin -- Borodina, Tatjana -- Soldatov, Aleksey -- Parkhomchuk, Dmitri -- Schmidt, Dominic -- O'Keeffe, Sean -- Haas, Stefan -- Vingron, Martin -- Lehrach, Hans -- Yaspo, Marie-Laure -- New York, N.Y. -- Science. 2008 Aug 15;321(5891):956-60. doi: 10.1126/science.1160342. Epub 2008 Jul 3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics, Ihnestrasse 73, 14195 Berlin, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18599741" target="_blank"〉PubMed〈/a〉
    Keywords: *Alternative Splicing ; Cell Line ; Cell Line, Tumor ; Computational Biology ; DNA, Complementary ; DNA, Intergenic ; Exons ; *Gene Expression Profiling ; *Genome, Human ; Humans ; Introns ; Oligonucleotide Array Sequence Analysis ; RNA Polymerase II/metabolism ; *RNA Splice Sites ; RNA, Messenger/*genetics ; *Sequence Analysis, RNA
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2013-12-20
    Description: Sugar beet (Beta vulgaris ssp. vulgaris) is an important crop of temperate climates which provides nearly 30% of the world's annual sugar production and is a source for bioethanol and animal feed. The species belongs to the order of Caryophylalles, is diploid with 2n = 18 chromosomes, has an estimated genome size of 714-758 megabases and shares an ancient genome triplication with other eudicot plants. Leafy beets have been cultivated since Roman times, but sugar beet is one of the most recently domesticated crops. It arose in the late eighteenth century when lines accumulating sugar in the storage root were selected from crosses made with chard and fodder beet. Here we present a reference genome sequence for sugar beet as the first non-rosid, non-asterid eudicot genome, advancing comparative genomics and phylogenetic reconstructions. The genome sequence comprises 567 megabases, of which 85% could be assigned to chromosomes. The assembly covers a large proportion of the repetitive sequence content that was estimated to be 63%. We predicted 27,421 protein-coding genes supported by transcript data and annotated them on the basis of sequence homology. Phylogenetic analyses provided evidence for the separation of Caryophyllales before the split of asterids and rosids, and revealed lineage-specific gene family expansions and losses. We sequenced spinach (Spinacia oleracea), another Caryophyllales species, and validated features that separate this clade from rosids and asterids. Intraspecific genomic variation was analysed based on the genome sequences of sea beet (Beta vulgaris ssp. maritima; progenitor of all beet crops) and four additional sugar beet accessions. We identified seven million variant positions in the reference genome, and also large regions of low variability, indicating artificial selection. The sugar beet genome sequence enables the identification of genes affecting agronomically relevant traits, supports molecular breeding and maximizes the plant's potential in energy biotechnology.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dohm, Juliane C -- Minoche, Andre E -- Holtgrawe, Daniela -- Capella-Gutierrez, Salvador -- Zakrzewski, Falk -- Tafer, Hakim -- Rupp, Oliver -- Sorensen, Thomas Rosleff -- Stracke, Ralf -- Reinhardt, Richard -- Goesmann, Alexander -- Kraft, Thomas -- Schulz, Britta -- Stadler, Peter F -- Schmidt, Thomas -- Gabaldon, Toni -- Lehrach, Hans -- Weisshaar, Bernd -- Himmelbauer, Heinz -- England -- Nature. 2014 Jan 23;505(7484):546-9. doi: 10.1038/nature12817. Epub 2013 Dec 18.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Max Planck Institute for Molecular Genetics, Ihnestrasse 63-73, 14195 Berlin, Germany [2] Centre for Genomic Regulation (CRG), C. Dr. Aiguader 88, 08003 Barcelona, Spain [3] Universitat Pompeu Fabra (UPF), C. Dr. Aiguader 88, 08003 Barcelona, Spain [4]. ; Bielefeld University, CeBiTec and Department of Biology, Universitatsstrasse 25, 33615 Bielefeld, Germany. ; 1] Centre for Genomic Regulation (CRG), C. Dr. Aiguader 88, 08003 Barcelona, Spain [2] Universitat Pompeu Fabra (UPF), C. Dr. Aiguader 88, 08003 Barcelona, Spain. ; TU Dresden, Department of Biology, Zellescher Weg 20b, 01217 Dresden, Germany. ; University of Leipzig, Department of Computer Science, Hartelstrasse 16-18, 04107 Leipzig, Germany. ; Max Planck Genome Centre Cologne, Carl-von-Linne-Weg 10, 50829 Koln, Germany. ; Syngenta, Box 302, 26123 Landskrona, Sweden. ; KWS SAAT AG, Grimsehlstrasse 31, 37574 Einbeck, Germany. ; 1] Centre for Genomic Regulation (CRG), C. Dr. Aiguader 88, 08003 Barcelona, Spain [2] Universitat Pompeu Fabra (UPF), C. Dr. Aiguader 88, 08003 Barcelona, Spain [3] Institucio Catalana de Recerca i Estudis Avancats (ICREA), Pg. Lluis Companys 23, 08010 Barcelona, Spain. ; Max Planck Institute for Molecular Genetics, Ihnestrasse 63-73, 14195 Berlin, Germany. ; 1] Max Planck Institute for Molecular Genetics, Ihnestrasse 63-73, 14195 Berlin, Germany [2] Centre for Genomic Regulation (CRG), C. Dr. Aiguader 88, 08003 Barcelona, Spain [3] Universitat Pompeu Fabra (UPF), C. Dr. Aiguader 88, 08003 Barcelona, Spain.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24352233" target="_blank"〉PubMed〈/a〉
    Keywords: Beta vulgaris/*genetics ; Biofuels/supply & distribution ; Carbohydrate Metabolism ; Chromosomes, Plant/genetics ; Crops, Agricultural/*genetics ; Ethanol/metabolism ; Genome, Plant/*genetics ; Genomics ; In Situ Hybridization, Fluorescence ; Molecular Sequence Data ; Phylogeny ; Sequence Analysis, DNA ; Spinacia oleracea/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...