ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 1989-01-01
    Description: An investigation of shell morphometrics of the prosobranch genus Paramelania from Lake Tanganyika shows striking contrasts between some live and dead populations from identical localities. Living populations and surficial dead shells were collected from 15 sublittoral-profundal localities along the east side of the lake. Interpopulation variability in this endemic gastropod is clinal (N-S) for several shell characters. Intrapopulation variability of dead shell populations frequently exceeds that of live populations. Distinctive morphs may be present in a local dead shell population which are absent in the live population from the same locality. However, the phenodeviant dead shell morphology may occur among live snails elsewhere in the lake. Phenodeviant shells may be encrusted, but are unabraded and show no preferred orientation.Radiocarbon ages of 〉2000 yr b.p. on dead phenodeviants suggest that surficial shell accumulations in Lake Tanganyika are strongly time-averaged. Although wave activity and biogenic concentration are important processes in Lake Tanganyika, neither is sufficient under modern lake conditions to account for these admixed assemblages. Winnowing and in situ stratigraphic condensation during periods of lowered lake levels is the most likely explanation for the occurrence of phenodeviant surficial shells. This hypothesis is consistent with the observation that extensive shell lags are exposed on the lake floor in areas currently inhabited by the same snails.A model of biogeographic range fluctuations for particular Paramelania morphs during the Holocene, in concert with lake level fluctuations, can account for the shell assemblages seen on the lake floor today. The complex history of these accumulations suggests that taphonomic admixtures may obscure the interpretation of evolutionary sequences in the lacustrine stratigraphic record.
    Print ISSN: 0094-8373
    Electronic ISSN: 0094-8373
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2004-01-01
    Print ISSN: 0094-8373
    Electronic ISSN: 0094-8373
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1993-01-01
    Description: We studied mammal and bird track formation at the northern edge of Lake Manyara, Tanzania, to develop models for interpreting fossil tracks and trackways. Lake Manyara is a closed-basin, alkaline lake in the East African Rift System. The area has a high vertebrate diversity, allowing us to investigate tracks in an environment similar to that of many ancient track-bearing sequences. Three study sites, two on mud flats adjacent to the lake margin and a third on a delta floodplain, provided contrasting environments in which to assess the types of biological data that can potentially be extracted from fossil trackways.Our censuses of mammals and their tracks revealed that most species that occur within the study area leave a track record, and that common species leave abundant tracks, although numbers of trackways are not proportional to numbers of individuals. Logarithmic increases in track sampling area yield a linear increase in the proportion of both the medium and large-sized local mammals represented in a track record. Transect vs. area mapping methods produced different censusing results, probably because of differences in monitoring periods and areal coverage.We developed a model of expected track production rates that incorporates activity budget and stride length data in addition to abundance data. By using these additional variables in a study of diurnal birds, we obtained a much better estimator relating track abundance to trackmaker abundance than that provided by census data alone. Proportions of different types of tracks predicted by the model differ significantly from the observed proportions, almost certainly because of microenvironmental differences between the censusing and track counting localities. Censuses of fossil tracks will be biased toward greater numbers of depositional-environment generalists and away from habitat-specific species.Trackways of migratory animals were dominantly shoreline-parallel, whereas trackways of sedentary species were more variable. A strong shoreline-parallel environmental zonation at the Alkaline Flats site exerted an influence on trackmaker distribution patterns, initial track formation, and track preservation. Variations in habitat usage by different species, as well as species abundance and directionality of movement, were all important in determining the number of preservable tracks a species produced within a given environmental zone.Fossil trackways are time-averaged, although over entirely different temporal scales than are bones. Unlike bones, tracks are not space-averaged. Therefore, wherever possible, fossil track and bone studies should be used to complement each other, as they provide fundamentally different pictures of paleocommunities. Tracks provide “snapshot” views of localized assemblages of organisms useful in reconstructing autecological relationships, whereas bones yield a broader image of a local fauna in which seasonal and microenvironmental variation are more commonly smoothed out.
    Print ISSN: 0094-8373
    Electronic ISSN: 0094-8373
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...