ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2020-04-24
    Description: Arid and semi-arid ecosystems represent a crucial but poorly understood component of the global water cycle. Taking a desert ecosystem as a case study, we measured sap flow in three dominant shrub species and concurrent environmental variables over two mean growing seasons. Commercially available gauges (Flow32 meters) based on the constant power stem heat balance (SHB) method were used. Stem-level sap flow rates were scaled up to stand level to estimate stand transpiration using the species-specific frequency distribution of stem diameter. We found that variations in stand transpiration were closely related to changes in solar radiation (Rs), air temperature (T), and vapor pressure deficit (VPD) at the hourly scale. Three factors together explained 84% and 77% variations in hourly stand transpiration in 2014 and 2015, respectively, with Rs being the primary driving force. We observed a threshold control of VPD (~2 kPa) on stand transpiration in two-year study periods, suggesting a strong stomatal regulation of transpiration under high evaporative demand conditions. Clockwise hysteresis loops between diurnal transpiration and T and VPD were observed and exhibited seasonal variations. Both the time lags and refill and release of stem water storage from nocturnal sap flow were possible causes for the hysteresis. These findings improve the understanding of environmental control on water flux of the arid and semi-arid ecosystems and have important implications for diurnal hydrology modelling.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-09-05
    Description: The headwater regions in the Tibetan Plateau play an essential role in the hydrological cycle, however the variation characteristics in the long-term precipitation and throughout-the-year apportionment remain ambiguous. To investigate the spatio-temporal variability of precipitation in the source region of the Yellow River (SRYR), different time scale data during 1979–2015 were studied based on Shannon entropy theory. Long-term marginal disorder index (LMDI) was defined to evaluate the inter-annual hydrologic budget for annual (AP) and monthly precipitation (MP), and annual marginal disorder index (AMDI) to measure intra-annual moisture supply disorderliness for daily precipitation (DP). Results reveal that the AP over the SRYR exhibits remarkable variation, with an inclination rate of 2.7 mm/year, and a significant increasing trend. The climatic trend reversed from warm–dry to warm–wet around the turn of this century. The start of the wet season has advanced from May instead of June, supported by the proportion of MP in AP and the LMDI for May are both comparable with the values during June–September. May contributes the main changes in AP, as it is the only month in the wet season which shows a significant increasing trend during 1979–2015, and has a value in the LMDI that divides the basin in half spatially, the same as AP, with a high value in the northwest and low in the southeast. The AMDI roughly rises with latitude in spatial distribution, with wetlands and glaciers disturbing the continuity of the pattern for a relatively perennial moisture supply. AP has increased on northwest high-altitude areas first and then the southern corner since the beginning of this century. Wetting is mainly attributed to the enhanced southwest monsoon and the warming-induced freeze-thaw process. Meanwhile, AMDI variation concentrated on the Zoige Plateau Wetland, the headwater corner, the summit and part of the North Slope in the Bayan Har Mountain, as a result of a single or combined effect of global climate change and human protection.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-02-16
    Description: In this paper, we applied the Empirical Orthogonal Function (EOF) analysis on a drought index expressed as consecutive dry days (CDD) to identify the drought variability in western United States. Based on the EOF analysis, correlation maps were generated between the leading principle component (PC) of seasonal CDD and sea surface temperature (SST) anomalies to explore the dynamic context of the leading modes in CDD. The EOF analysis indicates that the spatiotemporal pattern of winter CDD is related to an integrated impact from El Niño–Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO), and Atlantic Multi-decadal Oscillation (AMO), while summer CDD is mainly controlled by PDO phases. We also calculated seasonal CDD anomalies during selected climatic phases to further evaluate the impacts of large-scale oceanic oscillation on the spatial pattern of droughts. We found that AMO+/PDO− will contribute to a consistent drought condition during the winter in the western United States. El Niño will bring a dry winter to the northern part of western United States while La Niña will bring a dry winter to the southern part. During El Niño years, the drought center changes with the type of El Niño events. Considering the future states of the examined ocean oscillations, we suggest possible drier than normal conditions in the western United States for upcoming decades, and moreover, an intensified drought for the coast areas of the north Pacific region and upper Mississippi River Basin.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-09-19
    Description: This paper estimates the likely impacts of future climate change on streamflow, especially the hydrological extremes over the Yangtze River basin. The future climate was projected by the Coordinated Regional Climate Downscaling Experiment in East Asia (CORDEX-EA) initiative for the periods 2020–2049 under two representative concentration pathways (RCP) 4.5 and 8.5 emission scenarios. The bias corrected outputs from five regional climate models (RCMs) were used in conjunction with the variable infiltration capacity (VIC) macroscale hydrological model to produce hydrological projections. For the future climate of the Yangtze River basin, outputs from an ensemble of RCMs indicate that the annual mean temperature will increase for 2020–2049 by 1.81 °C for RCP4.5 and by 2.26 °C for RCP8.5. The annual mean precipitation is projected to increase by 3.62% under RCP4.5 and 7.65% under RCP8.5. Overall, increases in precipitation are amplified in streamflow, and the change in streamflow also shows significant temporal and spatial variations and large divergence between regional climate models. At the same time, the maximum streamflow in different durations are also projected to increase at three mainstream gauging stations based on flood frequency analysis. In particular, larger increases in maximum 1-day streamflow (+14.24% on average) compared to 5-day and 15-day water volumes (+12.79% and +10.24%) indicate that this projected extreme streamflow increase would be primarily due to intense short-period rainfall events. It is necessary to consider the impacts of climate change in future water resource management.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-06-12
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2018-11-21
    Description: If products were traded from regions with relatively high water productivity to regions with relatively low water productivity, water saving could be achieved. In this study, two indices—physical water-saving efficiency (volume of water savings per cubic meter of virtual water flows) and economic water-saving efficiency (value of water savings per cubic meter of virtual water flows considering water right trading)—were proposed to analyze the efficiency of inter-regional virtual water flows related to crop trade in China. Results indicated that the volume of inter-regional virtual water flows was 1.61 × 109 m3, more than 90% of which was occupied by oil-bearing crops, cereals, and beans. In terms of physical efficiency, only cereals and vegetables presented negative values. All kinds of crop trades were economically efficient, while most crops’ economic water-saving efficiency was less than 10 × 103 Yuan/m3. The application of advanced water-saving technologies, the cultivation of new crop varieties, the adjustment of regional cropping patterns, or consumption and trade patterns, could contribute to more water savings and higher physical water-saving efficiency, while the possible social, economic, and environmental tradeoffs should be considered simultaneously. Water right trading and virtual water compensation could contribute to sustainable water consumption, and full-cost pricing should be adapted in the future.
    Electronic ISSN: 2071-1050
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2018-11-02
    Description: Current environmental impact analyses are mainly focused on land, soil, energy, and material consumption, while studies regarding blue water consumption are scarce. Based on the water footprint concept, this study evaluates the impacts of blue water consumption on human health, ecosystem quality, and water resources in China from the production and consumption perspective, respectively. The results indicate that environmental impacts due to blue water consumption in China were 15.82 × 106 DALY (disability-adjusted life years), 96.54 × 109 m2∙year, and 175.20 × 109 MJ, and provinces such as Xinjiang, Shandong, and Hebei could be targets for achieving smaller environmental impacts in the future. More than 80% of environmental impacts were related to the agricultural sector. In terms of agricultural production, about 70% of the environmental impacts were related to product export. Measures such as the shift of the agricultural production pattern from water-intensive crops and animal products toward less water-intensive ones, the increase of agricultural water use efficiency, and the adoption of water-saving technologies could contribute to smaller environmental impacts. In terms of agricultural consumption, more than 95% of the environmental impacts were related to agricultural products produced locally. The focus was on increasing awareness of the importance of saving water and whether products were imported from regions with relatively small environmental impacts.
    Print ISSN: 1661-7827
    Electronic ISSN: 1660-4601
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-01-08
    Description: Changes in extreme precipitation are critical to assess the potential impacts of climate change on human and natural systems. This paper provides a comprehensive investigation on the multi-scale temporal variability of extreme precipitation in the Source Region of the Yellow River (SRYR). The statistical analysis explores multi-scale extreme precipitation variability ranging from short to long term, including seasonal, annual, and inter-annual variations at different locations in the SRYR. The results suggest that seasonal patterns of extreme precipitation do not always follow the seasonal pattern of total precipitation. Heavy precipitation mostly happens during the period from May and October with July as the peak, while dry conditions are mostly seen in winter seasons. However, there are no significant annual trends for most indices at most locations. The extreme heavy precipitation presents an increasing trend at high elevation and decreasing trend at low elevation. The extreme dry condition presents more consistently decreasing trends at nearly all locations. Long-term analyses indicate that most of the selected indices except average daily intensity display multi-year bands ranging from 2 to 8 years which is probably due to the effects of El Niño–Southern Oscillation (ENSO). A further evaluation on how the ENSO events would impact extreme precipitation shows that eastern Pacific warming (EPW) and central Pacific warming (CPW) would bring less extreme heavy precipitation compared to normal years. These results can provide a beneficial reference to understand the temporal variability of extreme precipitation in the SRYR.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-06-10
    Description: Climate warming has caused rapid shrinkage of glaciers in the Tibetan Plateau (TP), but the impact of glacier retreat on the chemical denudation rate remains largely unknown at the temperate glacial basins. The chemical weathering processes were examined at a temperate glacial basin (HLG) in the southeastern TP based on comprehensive data from the supraglacial meltwater, proglacial river water, precipitation and groundwater over two glacier melt seasons in 2008 and 2013. The concentrations of major ions and suspended sediments in river water exhibit a pronounced seasonality and display a close relationship with river discharge, suggesting a strong hydrological control on the chemical and physical weathering processes. Runoff chemistry is dominated by carbonate weathering and sulfide oxidation. HCO3−, Ca2+, and/or SO42− are the dominant ions in meltwater, river water, precipitation and groundwater. For river water, HCO3− and Ca2+ primarily come from calcite weathering, and SO42− is mainly derived from pyrite oxidation. Both solute and sediment fluxes are positively related to river discharge (r = 0.69, p 〈 0.01 for sediments). The solute flux and yields are 18,095–19,435 t·year−1 and 225–241 t·km−2·year−1, and the sediment load and yields are 126,390 t·year−1 and 1570 t·km−2·year−1, respectively. The solute yields, cationic denudation rate (CDR; 2850–3108 Σ*meq+ m−2·year−1) and chemical weathering intensity (CWI; 616–711 Σ*meq+ m−3·year−1) at HLG are higher than those at most basins irrespective of the lithology, suggesting more intense weathering in the TP in comparison to other glacial basins worldwide.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2018-01-24
    Electronic ISSN: 2071-1050
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...