ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • GFZ Data Services  (8)
Collection
Language
Years
  • 1
    Publication Date: 2022-06-07
    Description: Abstract
    Description: Spherical harmonic coefficients that are zero over the continents, and provide the anomalous simulated ocean bottom pressure that includes non-tidal air and water contributions elsewhere during the specified timespan. These coefficients differ from GLO (or GAC) coefficients over the ocean domain by disregarding upper air density anomalies. The anomalous signals are relative to the mean field from 2003-2014.
    Keywords: Gravity Recovery And Climate Experiment Follow-On (GRACE-FO) ; Gravity Recovery And Climate Experiment (GRACE) ; Level-2 ; SHM ; Spherical Harmonic Model ; Gravitational Field ; GSM ; Geopotential ; Gravity Field ; Mass ; Mass Transport ; Total Water Storage ; Time Variable Gravity ; Mass Balance ; Gravity Anomaly ; Satellite Geodesy ; Ocean ; Ocean Bottom Pressure ; AOD ; Atmosphere ; Non-tidal Atmosphere ; Dealiasing Product ; EARTH SCIENCE 〉 SOLID EARTH 〉 GRAVITY/GRAVITATIONAL FIELD
    Language: English
    Type: Dataset , Dataset
    Format: 2 Files
    Format: application/octet-stream
    Format: application/octet-stream
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-06-08
    Description: Abstract
    Description: The Atmosphere and Ocean De-Aliasing Level-1B (AOD1B) Product provides a priori information about temporal variations in the Earth's gravity field caused by global mass variability in atmosphere and ocean.'It is based on analysis and forecast data of the operational high-resolution global numerical weather prediction (NWP) model from the European Centre for Medium-Range Weather Forecasts (ECMWF) such as ERA5 and ocean bottom pressure from an unconstrained simulation with a global ocean general circulation model that is consistently forced with ECMWF atmospheric data.
    Keywords: Satellite Gravimetry ; De-Aliasing ; Mass Variability ; Earth Observation Satellites 〉 NASA Earth System Science Pathfinder 〉 GRACE ; EARTH SCIENCE SERVICES 〉 MODELS 〉 ATMOSPHERIC GENERAL CIRCULATION MODELS ; EARTH SCIENCE SERVICES 〉 MODELS 〉 OCEAN GENERAL CIRCULATION MODELS (OGCM)/REGIONAL OCEAN MODELS ; Models/Analyses 〉 ECMWFIFS
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-04-21
    Description: Abstract
    Description: Version History:15 June 2020:Initial release of the data. Note that the initial version number is 0002 in order to reflect the consistent data processing of this data set and Version 0002 of the data set Dobslaw et al. (2019, http://doi.org/10.5880/GFZ.GRAVIS_06_L3_OBP).---------------------------------------------------------------------------------------------GRACE/GRACE-FO Level-3 product based on COST-G RL01 Level-2B products (Dahle & Murböck, 2020) representing Ocean Bottom Pressure (OBP) variations provided at 1° latitude-longitude grids as defined over ocean areas. The OBP grids are provided in NetCDF format divided into yearly batches. The files each contain seven different variables:1) 'barslv': gravity-based barystatic sea-level pressure2) 'std_barslv': gravity-based barystatic sea-level pressure uncertainties3) 'resobp': gravity-based residual ocean circulation pressure resobp4) 'std_resobp': gravity-based residual ocean circulation pressure uncertainties5) 'leakage': apparent gravity-based bottom pressure due to continental leakage6) 'model_ocean': background-model ocean circulation pressure7) 'model_atmosphere': background-model atmospheric surface pressureThese Level-3 products are visualized at GFZ's web portal GravIS (http://gravis.gfz-potsdam.de). Link to data products: ftp://isdcftp.gfz-potsdam.de/grace/GravIS/COST-G/Level-3/OBP
    Keywords: Gravity Recovery And Climate Experiment (GRACE) ; GRACE Follow-on (GRACE-FO) ; Level-3 ; Mass ; Mass Transport ; Ocean Bottom Pressure ; Time Variable Gravity ; Mass Balance ; Satellite Geodesy ; EARTH SCIENCE 〉 SOLID EARTH 〉 GRAVITY/GRAVITATIONAL FIELD ; Earth Observation Satellites 〉 NASA Earth System Science Pathfinder 〉 GRACE
    Language: English
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-04-21
    Description: Abstract
    Description: Version History:15 June 2020:Initial release of the data. Note that the initial version number is 0002 in order to reflect the consistent data processing of this data set and Version 0002 of the data set Boergens et al. (2019, http://doi.org/10.5880/GFZ.GRAVIS_06_L3_TWS).---------------------------------------------------------------------------------------------GRACE/GRACE-FO Level-3 product based on COST-G RL01 Level-2B products (Dahle & Murböck, 2020) representing Terrestrial Water Storage (TWS) anomalies provided at 1° latitude-longitude grids as defined over all continental regions except Greenland and Antarctica. The TWS anomaly grids are provided in NetCDF format divided into yearly batches. The files each contain four different variables:1) 'tws': gravity-based TWS2) 'std_tws': gravity-based TWS uncertainties3) 'leakage': spatial leakage contained in TWS4) 'model_atmosphere': background model atmospheric massThese Level-3 products are visualized at GFZ's web portal GravIS (http://gravis.gfz-potsdam.de). Link to data products: ftp://isdcftp.gfz-potsdam.de/grace/GravIS/COST-G/Level-3/TWS
    Keywords: Gravity Recovery And Climate Experiment (GRACE) ; GRACE Follow-on (GRACE-FO) ; Level-3 ; Mass ; Mass Transport ; Total Water Storage ; Time Variable Gravity ; Mass Balance ; Satellite Geodesy ; EARTH SCIENCE 〉 SOLID EARTH 〉 GRAVITY/GRAVITATIONAL FIELD ; Earth Observation Satellites 〉 NASA Earth System Science Pathfinder 〉 GRACE
    Language: English
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2023-04-21
    Description: Abstract
    Description: Version History:09 June 2020: Release of Version 0002. This is an update of Version 0001 of the same data set. All changes and updates are documented in the changelog available via the data download section. Previously released versions of this data set are available at ftp://isdcftp.gfz-potsdam.de/grace/GravIS/GFZ/Level-3/OBP/old_versions---------------------------------------------------------------------------------------------GRACE/GRACE-FO Level-3 product based on GFZ RL06 Level-2B products (Dahle & Murböck, 2019) representing Ocean Bottom Pressure (OBP) variations provided at 1° latitude-longitude grids as defined over ocean areas. The OBP grids are provided in NetCDF format divided into yearly batches. The files each contain seven different variables:1) 'barslv': gravity-based barystatic sea-level pressure2) 'std_barslv': gravity-based barystatic sea-level pressure uncertainties3) 'resobp': gravity-based residual ocean circulation pressure resobp4) 'std_resobp': gravity-based residual ocean circulation pressure uncertainties5) 'leakage': apparent gravity-based bottom pressure due to continental leakage6) 'model_ocean': background-model ocean circulation pressure7) 'model_atmosphere': background-model atmospheric surface pressureThese Level-3 products are visualized at GFZ's web portal GravIS (http://gravis.gfz-potsdam.de). Link to data products: ftp://isdcftp.gfz-potsdam.de/grace/GravIS/GFZ/Level-3/OBP
    Keywords: Gravity Recovery And Climate Experiment (GRACE) ; GRACE Follow-on (GRACE-FO) ; Level-3 ; Mass ; Mass Transport ; Ocean Bottom Pressure ; Time Variable Gravity ; Mass Balance ; Satellite Geodesy ; EARTH SCIENCE 〉 SOLID EARTH 〉 GRAVITY/GRAVITATIONAL FIELD ; Earth Observation Satellites 〉 NASA Earth System Science Pathfinder 〉 GRACE
    Language: English
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2023-04-21
    Description: Abstract
    Description: Version History:9 June 2020:Release of Version 0002. This is an update of Version 0001 of the same data set. All changes and updates are documented in the changelog available via the data download section. Previously released versions of this data set are available at ftp://isdcftp.gfz-potsdam.de/grace/GravIS/GFZ/Level-3/TWS/old_versions.---------------------------------------------------------------------------------------------GRACE/GRACE-FO Level-3 product based on GFZ RL06 Level-2B products (Dahle & Murböck, 2019) representing Terrestrial Water Storage (TWS) anomalies provided at 1° latitude-longitude grids as defined over all continental regions except Greenland and Antarctica. The TWS anomaly grids are provided in NetCDF format divided into yearly batches. The files each contain four different variables:1) 'tws': gravity-based TWS2) 'std_tws': gravity-based TWS uncertainties3) 'leakage': spatial leakage contained in TWS4) 'model_atmosphere': background model atmospheric massThese Level-3 products are visualized at GFZ's web portal GravIS (http://gravis.gfz-potsdam.de). Link to data products: ftp://isdcftp.gfz-potsdam.de/grace/GravIS/GFZ/Level-3/TWS
    Keywords: Gravity Recovery And Climate Experiment (GRACE) ; GRACE Follow-on (GRACE-FO) ; Level-3 ; Mass ; Mass Transport ; Total Water Storage ; Time Variable Gravity ; Mass Balance ; Satellite Geodesy ; EARTH SCIENCE 〉 SOLID EARTH 〉 GRAVITY/GRAVITATIONAL FIELD ; Earth Observation Satellites 〉 NASA Earth System Science Pathfinder 〉 GRACE
    Language: English
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2023-10-12
    Description: Abstract
    Description: The Atmosphere and Ocean non-tidal De-aliasing Level-1B (AOD1B) product is widely used in satellite gravimetry to correct for transient effects of atmosphere-ocean mass variability that would otherwise alias into monthly-mean global gravity fields. The most recent release is based on the global ERA5 reanalysis and ECMWF operational data together with simulations from the general ocean circulation model MPIOM consistently forced with fields of the same atmospheric data-set. As background models are inevitably imperfect, residual errors due to aliasing remain. Accounting for the uncertainties of the background model data has, however, proven to be a useful approach to mitigate the impact of residual aliasing. In light of the changes made in the new release of AOD1B, previous uncertainty assessments are deemed too pessimistic and have been revised in the new time-series of true errors: AOe07. One possible way to include the uncertainty information of background models in gravity field estimation or simulation studies is through the computation and application of a variance-covariance matrix that describes the spatio-temporal error characteristics of the background model. The AOe07 variance-covariance-matrix provides this information through (1) a fully populated matrix up to degree and order 40 as well as (2) a diagonal matrix up to degree and order 180.
    Keywords: Satellite Gravimetry ; De-Aliasing ; Mass Variability ; Error Estimation ; Earth Observation Satellites 〉 NASA Earth System Science Pathfinder 〉 GRACE ; EARTH SCIENCE 〉 SOLID EARTH 〉 GRAVITY/GRAVITATIONAL FIELD 〉 GRAVITATIONAL FIELD ; EARTH SCIENCE 〉 SOLID EARTH 〉 GRAVITY/GRAVITATIONAL FIELD 〉 GRAVITY ; EARTH SCIENCE SERVICES 〉 MODELS 〉 ATMOSPHERIC GENERAL CIRCULATION MODELS ; EARTH SCIENCE SERVICES 〉 MODELS 〉 OCEAN GENERAL CIRCULATION MODELS (OGCM)/REGIONAL OCEAN MODELS ; Models/Analyses 〉 REANALYSIS MODELS
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2023-11-29
    Description: Abstract
    Description: This dataset contains predictions of Earth orientation parameters (EOP) submitted during the Second Earth Orientation Parameters Prediction Comparison Campaign (2nd EOP PCC). The 2nd EOP PCC has been carried out by Centrum Badań Kosmicznych Polskiej Akademii Nauk CBK PAN in Warsaw in cooperation with the GFZ German Research Centre for Geosciences in Potsdam (Germany) and under the auspices of the International Earth Rotation and Reference Systems Service (IERS) within the IERS Working Group on the 2nd EOP PCC. The purpose of the campaign was to re-assess the current capabilities of EOP forecasting and to find most reliable prediction approaches. The operational part of the campaign lasted between September 1, 2021 and December 28, 2022. Throughout the duration of the 2nd EOP PCC, registered campaign participants submitted forecasts for all EOP parameters, including dX, dY, dPsi, dEps (components of celestial pole offsets), polar motion, differences between universal time and coordinated universal time, and its time-derivative length-of-day change. These submissions were made to the EOP PCC Office every Wednesday before the 20:00 UTC deadline. The predictions were then evaluated once the geodetic final EOP observations from the forecasted period became available. Each participant could register more than one method, and each registered method was assigned an individual ID, which was used, e.g., for file naming. The dataset contains text files with predicted parameters as submitted by campaign participants and MATLAB file which is a database with all correct predictions from each participant loaded into a structure. Campaign overview and first results are described in the following articles: Śliwińska, J., Kur, T., Wińska, M., Nastula, J., Dobslaw, H., & Partyka, A. (2022). Second Earth Orientation Parameters Prediction Comparison Campaign (2nd EOP PCC): Overview. Artificial Satellites, 57(S1), 237–253. https://doi.org/10.2478/arsa-2022-0021 Kur, T., Dobslaw, H., Śliwińska, J., Nastula, J., & Wińska, M. (2022). Evaluation of selected short ‑ term predictions of UT1 ‑ UTC and LOD collected in the second earth orientation parameters prediction comparison campaign. Earth, Planets and Space, 74. https://doi.org/10.1186/s40623-022-01753-9
    Keywords: Earth orientation parameters ; prediction ; polar motion ; universal time ; length-of-day ; nutation ; celestial pole offsets ; UT1-UTC ; Earth Remote Sensing Instruments 〉 Active Remote Sensing 〉 Positioning/Navigation ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEODETICS 〉 COORDINATE REFERENCE SYSTEM 〉 GLOBAL COORDINATE REFERENCE SYSTEM ; EARTH SCIENCE 〉 SOLID EARTH 〉 GRAVITY/GRAVITATIONAL FIELD 〉 POLAR MOTION ; EARTH SCIENCE 〉 SOLID EARTH 〉 GRAVITY/GRAVITATIONAL FIELD 〉 ROTATIONAL MOTION/VARIATIONS ; EARTH SCIENCE SERVICES 〉 DATA ANALYSIS AND VISUALIZATION 〉 GLOBAL POSITIONING SYSTEMS ; science 〉 geography 〉 geodesy
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...