ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2021-01-09
    Description: Despite the amount of research focused on the Alpine orogen, significant unknowns remain regarding the thermal field and long term lithospheric strength in the region. Previous published interpretations of these features primarily concern a limited number of 2D cross sections, and those that represent the region in 3D typically do not conform to measured data such as wellbore or seismic measurements. However, in the light of recently published higher resolution region specific 3D geophysical models, that conform to secondary data measurements, the generation of a more up to date revision of the thermal field and long term lithospheric yield strength is made possible, in order to shed light on open questions of the state of the orogen. The study area of this work focuses on a region of 660 km x 620 km covering the vast majority of the Alps and their forelands, with the Central and Eastern Alps and the northern foreland being the best covered regions.
    Language: English
    Type: info:eu-repo/semantics/workingPaper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-02-12
    Description: We present a 3-D lithospheric-scale model covering the area of Germany that images the regional structural configuration. The model comprises 31 lithostratigraphic units: seawater, 14 sedimentary units, 14 crystalline crustal units and 2 lithospheric mantle units. The corresponding surfaces are integrated from previous studies of the Central European Basin System, the Upper Rhine Graben and the Molasse Basin, together with published geological and geophysical data. The model is a result of a combined workflow consisting of 3-D structural, gravity and thermal modelling applied to derive the 3-D thermal configuration. The top surface elevations and thicknesses of corresponding layers of the 3-D-D model are provided as ASCII files, one for each individual layer of the model. The columns in each file are identical: the Easting is given in the “X COORD (UTM Zone 32N)”, the Northing is in the “Y COORD (UTM Zone 32N)”, the top surface elevation of each layer is given as "TOP (m.a.s.l)", the thickness of each layer is given as "THICKNESS (m)".
    Language: English
    Type: info:eu-repo/semantics/workingPaper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-09
    Description: We provide a single file (exodus II format) that contains all results of the modeling efforts of the associated paper. This encompasses all structural information as well as the pore pressure, temperature, and fluid velocity distribution through time. We also supply all files necessary to rerun the simulation, resulting in the aforementioned output file. The model area covers a rectangular area around the Central European Basin System (Maystrenko et al., 2020). The data publication is compeiment to Frick et al., (2021). The file published here is based on the structural model after Maystrenko et al., (2020) which resolves 16 geological units. More details about the structure and how it was derived can be found in Maystrenko et al., (2020). The file presented contains information on the regional variation of the pore pressure, temperature and fluid velocity of the model area in 3D. This information is presented for 364 time steps starting from 43,000 years before present and ending at 310000 years after present.
    Type: info:eu-repo/semantics/workingPaper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-01-17
    Description: This data repository contains the 3D steady-state thermal field computed for the South Caribbean and NW South America down to 75 km depth, the modelled hypocentral temperatures, the depths to the upper and lower stability transitions, as well as the seismogenic thickness calculated from selected earthquakes of the ISC Bulletin (International Seismological Centre, 2022). All methodological details can be found in the main publication (see section 2). We used the uppermost 75 km of the gravity-constrained structural and density model of Gómez-García et al. (2020, 2021) to derive the 3D thermal configuration of the study area. A steady-state approach was followed, in which upper and lower boundary conditions were set to run the thermal experiments using the software GOLEM (Cacace amp; Jacquey, 2017; Jacquey amp; Cacace, 2017). We selected earthquakes from the ISC Bulletin from January 1980 to January 2021 (International Seismological Centre, 2022), considering the magnitude of completeness for different periods, removing earthquakes without depth, set as 0 km or fixed, as well as those with reported hypocentral depth errors gt;30 km. Of this set, we selected the crustal earthquakes, located between the topo-bathymetry from the GEBCO relief (Weatherall et al., 2015) and the Moho depth from the GEMMA model (Reguzzoni amp; Sampietro, 2015), interpolated to a resolution of 5 km. From this earthquake subset we computed the upper and lower stability transitions for seismogenesis, as the 10th and 90th percentiles (D10 and D90), respectively, of the hypocentral depths. These percentiles were mapped on a latitude-longitude grid, using for each grid node its 20 closest earthquakes as sample. The hypocentral temperatures and the temperatures at the D10 and D90 crustal depths were calculated from the lithospheric-scale thermal model. Lastly, the crustal seismogenic thickness was computed as the difference between D90 and D10 for each grid node. For more details about the modelling approach and interpretation of the results, we kindly ask the reader to refer to the main publication: Gomez-Garcia et al., (2022).
    Language: English
    Type: info:eu-repo/semantics/workingPaper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-11-13
    Description: This dataset provides the grid files which were used to generate the 3d structural model for Berlin, capital city of Germany. It covers a rectangular area around the political boundaries of Berlin. Geologically the region is located in the Northeast German Basin which is in turn part of the Central European Basin System. The data publication is a compliment to the publications Frick et al., (2019) and Haacke et al., (2019) and resolves 23 geological units. These can be separated into eight Cenozoic, eight Mesozoic and three Paleozoic units, the upper and lower crust as well as the lithospheric mantle. We present files which show the regional variation in depth and thickness of all units in the form of regularly spaced grids where the grid spacing is 100 m. This model was created as part of the ongoing project Geothermal potential Berlin which was also partly situated in Energy Systems 2050, both of whom look at the evaluation of the local thermal field and the closely related geothermal potential. These are obtained by simulating fluid- and heatflow in 3d with numerical models built based on the data presented here. These numerical models and simulations rely heavily on a precise representation of the subsurface distribution of rock properties which are in turn linked to the different geological units. Hence, we integrated all available geological and geophysical data (see related work) into a consistent 3D structural model and will describe shortly how this was carried out (Methods). For further information the reader is referred to Frick et al., (2016) and Frick et al., (2019).
    Language: English
    Type: info:eu-repo/semantics/workingPaper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-01-24
    Description: The southern Central Andes (SCA, 29°S-39°S) are characterized by the subduction of the oceanic Nazca Plate beneath the continental South American Plate. One striking feature of this area is the change of the subduction angle of the Nazca Plate between 33°S and 35°S from the Chilean-Pampean flat-slab zone (〈 5° dip) in the north to a steeper sector in the south (~30° dip). Subduction geometry, tectonic deformation, and seismicity at this plate boundary are closely related to the lithospheric strength in the upper plate. Despite recent research focused on the compositional and thermal characteristics of the SCA lithosphere, the lithospheric strength distribution remains largely unknown. Here we calculated the long-term lithospheric strength on the basis of an existing 3D model describing the variation of thickness, density and temperature of geological units forming the lithosphere of the SCA. The model consists of a continental plate with sediments, a two-layer crust and the lithospheric mantle being subducted by an oceanic plate. The model extension covers an area of 700 km x 1100 km, including the orogen (i.e. magmatic arc, main orogenic wedge), the forearc and the foreland, and it extents down to 200 km depth.
    Language: English
    Type: info:eu-repo/semantics/workingPaper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-03-04
    Description: The dataset is the basis for describing a 60-year-long evolution of groundwater dynamics and thermal field in the North German Basin beneath the Federal State of Brandenburg (NE Germany), covering the period between 1953 and 2014 with monthly increments. It was produced by one-way coupling of a near-surface distributed hydrologic model to a 3D basin-scale thermohydraulic groundwater model with the goal of investigating feedbacks between climate-driven forcing (in terms of time- and space-varying recharge and temperature), basin-scale geology, and topographic gradients. Modeled pressure and temperature distributions are validated against published groundwater level and temperature time series from observation wells. Our results indicate the spatio-temporal extent of the groundwater system subjected to nonlinear interactions between local geological variability and climate conditions. The dataset comprises of input files and scripts required to run the groundwater model in GOLEM and output files from the transient thermo-hydraulic simulations in EXODUS format. The input and output data is organized as separate archived folders (*.gz format).
    Type: info:eu-repo/semantics/workingPaper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2024-04-04
    Description: This data repository for the Southern Caribbean and NW South America contains a 3D thermal model computed down to 75 km depth, the modelled hypocentral temperatures and geothermal gradients at the locations of crustal earthquakes, and the crustal seismogenic depths calculated from earthquake statistics, as well as the associated modelled temperatures. We used the uppermost 75 km of the gravity-constrained structural and density model of Gómez-García et al. (2020, 2021) to derive the 3D thermal configuration of the study area (5°-15° N, 63°-82° W). A steady-state approach was followed, in which upper and lower boundary conditions were set to run the thermal calculations using the software GOLEM (Cacace & Jacquey, 2017; Jacquey & Cacace, 2017). A catalogue of earthquakes occurred within the study area and surroundings was compiled from public sources. In the database archived here, we provide data of the best located crustal earthquakes within the boundaries of this area, from January 1980 to June 2021. Earthquakes below the magnitude of completeness, or with poorly determined depths, were disregarded. Earthquakes were deemed crustal if their hypocentres were located between the topo-bathymetry from the GEBCO relief (Weatherall et al., 2015) and the Moho depth from the GEMMA model (Reguzzoni & Sampietro, 2015). We computed the crustal seismogenic depth as the 90th and 95th percentiles (D90 and D95), respectively, of the crustal hypocentral depths. These percentiles were mapped on a latitude-longitude grid, using for each grid node at least the 20 closest earthquakes as sample. The hypocentral temperatures, the geothermal gradient at the earthquake locations, and the temperatures at the D90 and D95 surfaces were calculated from the lithospheric-scale thermal model. For more details about the modelling approach and interpretation of the results, we kindly ask the reader to refer to the main publication: Gomez-Garcia et al. (2024).
    Type: info:eu-repo/semantics/workingPaper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...