ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Cambridge University Press  (3)
  • Oxford University Press  (2)
  • Geological Society of America (GSA)  (1)
  • 1
    Publication Date: 2020-07-10
    Description: The orogenic development after the continental collision between Laurussia and Gondwana, led to two contrasting associations of mantle-derived magmatic rocks on the territory of the Bohemian Massif: (i) a 340–310 Ma lamprophyre-lamproite orogenic association and (ii) a 300–275 Ma lamprophyre association of anorogenic affinity. Major types of potassic mantle-derived magmatic rocks recognised in the orogenic and anorogenic associations include: (i) calc-alkaline to alkaline lamprophyres, (ii) alkaline “orthopyroxene minettes” (and geochemically related rocks), and (iii) peralkaline lamproites. These three types significantly differ with respect to mineral, whole-rock and Sr–Nd–Pb–Li isotope composition, and spatial distribution. The calc-alkaline lamprophyres occur throughout the entire Saxo-Thuringian and Moldanubian zones, whereas the different types of malte-derived potassic rocks are spatially restricted to particular zones. Rocks of the Carboniferous lamprophyre-lamproite orogenic association are characterised by variable negative εNd(i) and variably radiogenic Sr(i), whereas the rocks of the Permian lamprophyre association of anorogenic affinity are characterised by positive εNd(i) and relatively young depleted-mantle Nd-model ages reflecting increasing input from upwelling asthenospheric mantle. The small variation in the Pb isotopic composition of post-collisional potassic mantle-derived magmatic rocks (of both the orogenic and anorogenic series) implies that the Pb budget of the mantle beneath the Bohemian Massif is dominated by the same crust-derived material, which itself may include material derived from several sources. The source rocks of “orthopyroxene minettes” are characterised by isotopically light (“eclogitic”) Li and strongly radiogenic (crustal) Sr and may have been metasomatised by high-pressure fluids along the edge of a subduction zone. In contrast, the strongly Al2O3 and CaO depleted mantle source of the lamproites is characterised by isotopically heavy Li and high SiO2 and extreme K2O contents. This mantle source may have been metasomatised predominantly by melts. The mantle source of the lamprophyres may have undergone metasomatism by both fluids and melts.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-01-01
    Description: A poorly understood lag time of 15-20 m.y. exists between the initial Arabia-Eurasia continental collision in late Eocene to early Oligocene time and the acceleration of tectonic and sedimentary processes across the collision zone in the early to late Miocene. The late Eocene to Miocene-Pliocene clastic and shallow-marine sedimentary rocks of the Kond, Eyvanekey, and Semnan Basins in the Alborz Mountains (northern Iran) offer the possibility to track the evolution of this orogen in the framework of collision processes. A transition from volcaniclastic submarine deposits to shallow-marine evaporites and terrestrial sediments occurred shortly after 36 Ma in association with reversals in sediment provenance, strata tilting, and erosional unroofing. These events followed the termination of subduction arc magmatism and marked a changeover from an extensional to a contractional regime in response to initiation of continental collision with the subduction of stretched Arabian lithosphere. This early stage of collision produced topographic relief associated with shallow foreland basins, suggesting that shortening and tectonic loading occurred at low rates. Starting from the early Miocene (17.5 Ma), flexural subsidence in response to foreland basin initiation occurred. Fast sediment accumulation rates and erosional unroofing trends point to acceleration of shortening by the early Miocene. We suggest that the lag time between the initiation of continental collision (36 Ma) and the acceleration of regional deformation (20-17.5 Ma) reflects a two-stage collision process, involving the "soft" collision of stretched lithosphere at first and "hard" collision following the arrival of unstretched Arabian continental lithosphere in the subduction zone.
    Print ISSN: 0016-7606
    Electronic ISSN: 1943-2674
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2012-03-01
    Description: In the late Palaeozoic fore-arc system of north-central Chile at latitudes 31–32°S (from the west to the east) three lithotectonic units are telescoped within a short distance by a Mesozoic strike-slip event (derived peak P–T conditions in brackets): (1) the basally accreted Choapa Metamorphic Complex (CMC; 350–430°C, 6–9 kbar), (2) the frontally accreted Arrayán Formation (AF; 280–320°C, 4–6 kbar) and (3) the retrowedge basin of the Huentelauquén Formation (HF; 280–320°C, 3–4 kbar). In the CMC, Ar–Ar spot ages locally date white-mica formation at peak P–T conditions and during early exhumation at 279–242 Ma. In a local garnet mica-schist intercalation (570–585°C, 11–13 kbar) Ar–Ar spot ages refer to the ascent from the subduction channel at 307–274 Ma. Portions of the CMC were isobarically heated to 510–580°C at 6.6–8.5 kbar. The age of peak P–T conditions in the AF can only vaguely be approximated at = 310 Ma by relict fission-track ages consistent with the observation that frontal accretion occurred prior to basal accretion. Zircon fission-track dating indicates cooling below ~ 280°C at ~ 248 Ma in the CMC and the AF, when a regional unconformity also formed. Ar–Ar white-mica spot ages in parts of the CMC and within the entire AF and HF point to heterogeneous resetting during Mesozoic extensional and shortening events at ~ 245–240 Ma, ~ 210–200 Ma, ~ 174–159 Ma and ~ 142–127 Ma. The zircon fission-track ages are locally reset at 109–96 Ma. All resetting of Ar–Ar white-mica ages is proposed to have occurred by in situ dissolution/precipitation at low temperature in the presence of locally penetrating hydrous fluids. Hence syn- and postaccretionary events in the fore-arc system can still be distinguished and dated in spite of its complex heterogeneous postaccretional overprint.
    Print ISSN: 0016-7568
    Electronic ISSN: 1469-5081
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2014-11-11
    Description: 40Ar/39Ar in situ UV laser ablation of white mica, Rb–Sr mineral isochrons and zircon fission track dating were applied to determine ages of very low- to low-grade metamorphic processes at 3.5±0.4 kbar, 280±30°C in the Avalonian Mira terrane of SE Cape Breton Island (Nova Scotia). The Mira terrane comprises Neoproterozoic volcanic-arc rocks overlain by Cambrian sedimentary rocks. Crystallization of metamorphic white mica was dated in six metavolcanic samples by 40Ar/39Ar spot age peaks between 396±3 and 363±14 Ma. Rb–Sr systematics of minerals and mineral aggregates yielded two isochrons at 389±7 Ma and 365±8 Ma, corroborating equilibrium conditions during very low- to low-grade metamorphism. The dated white mica is oriented parallel to foliations produced by sinistral strike-slip faulting and/or folding related to the Middle–Late Devonian transpressive assembly of Avalonian terranes during convergence and emplacement of the neighbouring Meguma terrane. Exhumation occurred earlier in the NW Mira terrane than in the SE. Transpression was related to the closure of the Rheic Ocean between Gondwana and Laurussia by NW-directed convergence. The 40Ar/39Ar spot age spectra also display relict age peaks at 477–465 Ma, 439 Ma and 420–428 Ma attributed to deformation and fluid access, possibly related to the collision of Avalonia with composite Laurentia or to earlier Ordovician–Silurian rifting. Fission track ages of zircon from Mira terrane samples range between 242±18 and 225±21 Ma and reflect late Palaeozoic reburial and reheating close to previous peak metamorphic temperatures under fluid-absent conditions during rifting prior to opening of the Central Atlantic Ocean.
    Print ISSN: 0016-7568
    Electronic ISSN: 1469-5081
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2011-08-16
    Description: In the late Palaeozoic fore-arc system of north-central Chile at latitudes 31–32°S (from the west to the east) three lithotectonic units are telescoped within a short distance by a Mesozoic strike-slip event (derived peakP–Tconditions in brackets): (1) the basally accreted Choapa Metamorphic Complex (CMC; 350–430°C, 6–9 kbar), (2) the frontally accreted Arrayán Formation (AF; 280–320°C, 4–6 kbar) and (3) the retrowedge basin of the Huentelauquén Formation (HF; 280–320°C, 3–4 kbar). In the CMC, Ar–Ar spot ages locally date white-mica formation at peakP–Tconditions and during early exhumation at 279–242 Ma. In a local garnet mica-schist intercalation (570–585°C, 11–13 kbar) Ar–Ar spot ages refer to the ascent from the subduction channel at 307–274 Ma. Portions of the CMC were isobarically heated to 510–580°C at 6.6–8.5 kbar. The age of peakP–Tconditions in the AF can only vaguely be approximated at ≥ 310 Ma by relict fission-track ages consistent with the observation that frontal accretion occurred prior to basal accretion. Zircon fission-track dating indicates cooling below ~ 280°C at ~ 248 Ma in the CMC and the AF, when a regional unconformity also formed. Ar–Ar white-mica spot ages in parts of the CMC and within the entire AF and HF point to heterogeneous resetting during Mesozoic extensional and shortening events at ~ 245–240 Ma, ~ 210–200 Ma, ~ 174–159 Ma and ~ 142–127 Ma. The zircon fission-track ages are locally reset at 109–96 Ma. All resetting of Ar–Ar white-mica ages is proposed to have occurred byin situdissolution/precipitation at low temperature in the presence of locally penetrating hydrous fluids. Hence syn- and postaccretionary events in the fore-arc system can still be distinguished and dated in spite of its complex heterogeneous postaccretional overprint.
    Print ISSN: 0016-7568
    Electronic ISSN: 1469-5081
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...