ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2003-11-08
    Description: Twenty years ago the first scanning probe instrument, the scanning tunneling microscope, opened up new realms for our perception of the world. Atoms that had been abstract entities were now real objects, clearly seen as distinguishable individuals at particular positions in space. A whole family of scanning probe instruments has been developed, extending our sense of touching to the scale of atoms and molecules. Such instruments are especially useful for imaging of biomolecular structures because they can produce topographic images with submolecular resolution in aqueous environments. Instruments with increased imaging rates, lower probe-specimen force interactions, and probe configurations not constrained to planar surfaces are being developed, with the goal of imaging processes at the single-molecule level-not only at surfaces but also within three-dimensional volumes-in real time.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Horber, J K H -- Miles, M J -- New York, N.Y. -- Science. 2003 Nov 7;302(5647):1002-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physiology, Wayne State University School of Medicine, 5229 Scott Hall, 540 East Canfield Avenue, Detroit, MI 48201, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14605360" target="_blank"〉PubMed〈/a〉
    Keywords: Biology/instrumentation/*methods ; Cellular Structures/physiology/*ultrasonography ; Crystallization ; Electrochemistry ; *Microscopy, Atomic Force/instrumentation/methods ; *Microscopy, Scanning Probe/instrumentation/methods ; Nanotechnology ; Optics and Photonics ; Protein Conformation ; Proteins/*chemistry/ultrastructure
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-04-13
    Description: An ability to mimic the boundaries of biological compartments would improve our understanding of self-assembly and provide routes to new materials for the delivery of drugs and biologicals and the development of protocells. We show that short designed peptides can be combined to form unilamellar spheres approximately 100 nanometers in diameter. The design comprises two, noncovalent, heterodimeric and homotrimeric coiled-coil bundles. These are joined back to back to render two complementary hubs, which when mixed form hexagonal networks that close to form cages. This design strategy offers control over chemistry, self-assembly, reversibility, and size of such particles.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fletcher, Jordan M -- Harniman, Robert L -- Barnes, Frederick R H -- Boyle, Aimee L -- Collins, Andrew -- Mantell, Judith -- Sharp, Thomas H -- Antognozzi, Massimo -- Booth, Paula J -- Linden, Noah -- Miles, Mervyn J -- Sessions, Richard B -- Verkade, Paul -- Woolfson, Derek N -- BB/G008833/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2013 May 3;340(6132):595-9. doi: 10.1126/science.1233936. Epub 2013 Apr 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉School of Chemistry, Cantock's Close, University of Bristol, Bristol BS8 1TS, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23579496" target="_blank"〉PubMed〈/a〉
    Keywords: Circular Dichroism ; Microscopy, Electron, Scanning ; Models, Molecular ; Molecular Dynamics Simulation ; *Nanostructures ; Peptides/*chemistry ; Protein Conformation ; Protein Folding ; Protein Multimerization ; Protein Structure, Secondary ; Thermodynamics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-05-07
    Description: The preparation of colloidally stable, self-assembled materials with tailorable solid or hollow two-dimensional (2D) structures represents a major challenge. We describe the formation of uniform, monodisperse rectangular platelet micelles of controlled size by means of seeded-growth methods that involve the addition of blends of crystalline-coil block copolymers and the corresponding crystalline homopolymer to cylindrical micelle seeds. Sequential addition of different blends yields solid platelet block comicelles with concentric rectangular patches with distinct coronal chemistries. These complex nano-objects can be subject to spatially selective processing that allows their disassembly to form perforated platelets, such as well-defined hollow rectangular rings. The solid and hollow 2D micelles provide a tunable platform for further functionalization and potential for a variety of applications.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Qiu, Huibin -- Gao, Yang -- Boott, Charlotte E -- Gould, Oliver E C -- Harniman, Robert L -- Miles, Mervyn J -- Webb, Stephen E D -- Winnik, Mitchell A -- Manners, Ian -- Medical Research Council/United Kingdom -- New York, N.Y. -- Science. 2016 May 6;352(6286):697-701. doi: 10.1126/science.aad9521.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉School of Chemistry, University of Bristol, Bristol BS8 1TS, UK. ; School of Physics, University of Bristol, Bristol BS8 1TL, UK. ; Central Laser Facility, Science and Technology Facilities Council, Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot OX11 0QX, UK. ; Department of Chemistry, University of Toronto, Toronto, Ontario, M5S 3H6, Canada. ; School of Chemistry, University of Bristol, Bristol BS8 1TS, UK. ian.manners@bristol.ac.uk.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/27151866" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...