ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • aircraft measurements  (1)
  • 1995-1999  (1)
Collection
Keywords
Publisher
Years
  • 1995-1999  (1)
Year
  • 1
    ISSN: 1573-0662
    Keywords: trace gas and particle distributions ; ozone production ; aircraft measurements ; tropopause region
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract In situ aircraft measurements of O3, CO,HNO3, and aerosol particles are presented,performed over the North Sea region in the summerlower stratosphere during the STREAM II campaign(Stratosphere Troposphere Experiments by AircraftMeasurements) in July 1994. Occasionally, high COconcentrations of 200-300 pbbv were measured in thelowermost stratosphere, together with relatively highHNO3 concentrations up to 1.6 ppbv. The particlenumber concentration (at standard pressure andtemperature) between 0.018-1 μm decreased acrossthe tropopause, from 〉1000 cm-3 in the uppertroposphere to 〈500 cm-3 in the lowermoststratosphere. Since the CO sources are found in thetroposphere, the elevated CO mixing ratios areattributed to mixing of polluted tropospheric air intothe lowermost extratropical stratosphere. Further wehave used a chemical model to illustrate that nitrogenoxide reservoir species (mainly HNO3) determinethe availability of NOx (=NO + NO2) andtherefore largely control the total net O3production in the lower kilometers of thestratosphere. Model simulations, applying additionalNOx perturbations from aircraft, show that theO3 production efficiency of NOx is smallerthan previously assumed, under conditions withrelatively high HNO3 mixing ratios, as observedduring STREAM II. The model simulations furthersuggest a relatively high O3 productionefficiency from CO oxidation, as a result of therelatively high ambient HNO3 and NOxconcentrations, implying that upward transport of COrich air enhances O3 production in the lowermoststratosphere. Analysis of the measurements and themodel calculations suggest that the lowermoststratosphere is a transition region in which thechemistry deviates from both the upper troposphere andlower stratosphere.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...